Merge pull request #952 from SeaTidesPro/main

add readme-linux-zh
This commit is contained in:
Vega 2023-08-31 11:41:10 +08:00 committed by GitHub
commit 98d38d84c3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

223
README-LINUX-CN.md Normal file
View File

@ -0,0 +1,223 @@
## 实时语音克隆 - 中文/普通话
![mockingbird](https://user-images.githubusercontent.com/12797292/131216767-6eb251d6-14fc-4951-8324-2722f0cd4c63.jpg)
[![MIT License](https://img.shields.io/badge/license-MIT-blue.svg?style=flat)](http://choosealicense.com/licenses/mit/)
### [English](README.md) | 中文
### [DEMO VIDEO](https://www.bilibili.com/video/BV17Q4y1B7mY/) | [Wiki教程](https://github.com/babysor/MockingBird/wiki/Quick-Start-(Newbie)) [训练教程](https://vaj2fgg8yn.feishu.cn/docs/doccn7kAbr3SJz0KM0SIDJ0Xnhd)
## 特性
🌍 **中文** 支持普通话并使用多种中文数据集进行测试aidatatang_200zh, magicdata, aishell3, biaobei, MozillaCommonVoice, data_aishell 等
🤩 **Easy & Awesome** 仅需下载或新训练合成器synthesizer就有良好效果复用预训练的编码器/声码器或实时的HiFi-GAN作为vocoder
🌍 **Webserver Ready** 可伺服你的训练结果,供远程调用。
🤩 **感谢各位小伙伴的支持,本项目将开启新一轮的更新**
## 1.快速开始
### 1.1 建议环境
- Ubuntu 18.04
- Cuda 11.7 && CuDNN 8.5.0
- Python 3.8 或 3.9
- Pytorch 2.0.1 <post cuda-11.7>
### 1.2 环境配置
```shell
# 下载前建议更换国内镜像源
conda create -n sound python=3.9
conda activate sound
git clone https://github.com/babysor/MockingBird.git
cd MockingBird
pip install -r requirements.txt
pip install webrtcvad-wheels
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
```
### 1.3 模型准备
> 当实在没有设备或者不想慢慢调试,可以使用社区贡献的模型(欢迎持续分享):
| 作者 | 下载链接 | 效果预览 | 信息 |
| --- | ----------- | ----- | ----- |
| 作者 | https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g [百度盘链接](https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g) 4j5d | | 75k steps 用3个开源数据集混合训练
| 作者 | https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw [百度盘链接](https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw) 提取码om7f | | 25k steps 用3个开源数据集混合训练, 切换到tag v0.0.1使用
|@FawenYo | https://drive.google.com/file/d/1H-YGOUHpmqKxJ9FRc6vAjPuqQki24UbC/view?usp=sharing [百度盘链接](https://pan.baidu.com/s/1vSYXO4wsLyjnF3Unl-Xoxg) 提取码1024 | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps 台湾口音需切换到tag v0.0.1使用
|@miven| https://pan.baidu.com/s/1PI-hM3sn5wbeChRryX-RCQ 提取码2021 | https://www.bilibili.com/video/BV1uh411B7AD/ | 150k steps 注意:根据[issue](https://github.com/babysor/MockingBird/issues/37)修复 并切换到tag v0.0.1使用
### 1.4 文件结构准备
文件结构准备如下所示算法将自动遍历synthesizer下的.pt模型文件。
```
# 以第一个 pretrained-11-7-21_75k.pt 为例
└── data
└── ckpt
└── synthesizer
└── pretrained-11-7-21_75k.pt
```
### 1.5 运行
```
python web.py
```
## 2.模型训练
### 2.1 数据准备
#### 2.1.1 数据下载
``` shell
# aidatatang_200zh
wget https://openslr.elda.org/resources/62/aidatatang_200zh.tgz
```
``` shell
# MAGICDATA
wget https://openslr.magicdatatech.com/resources/68/train_set.tar.gz
wget https://openslr.magicdatatech.com/resources/68/dev_set.tar.gz
wget https://openslr.magicdatatech.com/resources/68/test_set.tar.gz
```
``` shell
# AISHELL-3
wget https://openslr.elda.org/resources/93/data_aishell3.tgz
```
```shell
# Aishell
wget https://openslr.elda.org/resources/33/data_aishell.tgz
```
#### 2.1.2 数据批量解压
```shell
# 该指令为解压当前目录下的所有压缩文件
for gz in *.gz; do tar -zxvf $gz; done
```
### 2.2 encoder模型训练
#### 2.2.1 数据预处理:
需要先在`pre.py `头部加入:
```python
import torch
torch.multiprocessing.set_start_method('spawn', force=True)
```
使用以下指令对数据预处理:
```shell
python pre.py <datasets_root> \
-d <datasets_name>
```
其中`<datasets_root>`为原数据集路径,`<datasets_name>` 为数据集名称。
支持 `librispeech_other``voxceleb1``aidatatang_200zh`,使用逗号分割处理多数据集。
### 2.2.2 encoder模型训练
超参数文件路径:`models/encoder/hparams.py`
```shell
python encoder_train.py <name> \
<datasets_root>/SV2TTS/encoder
```
其中 `<name>` 是训练产生文件的名称,可自行修改。
其中 `<datasets_root>` 是经过 `Step 2.1.1` 处理过后的数据集路径。
#### 2.2.3 开启encoder模型训练数据可视化可选
```shell
visdom
```
### 2.3 synthesizer模型训练
#### 2.3.1 数据预处理:
```shell
python pre.py <datasets_root> \
-d <datasets_name> \
-o <datasets_path> \
-n <number>
```
`<datasets_root>` 为原数据集路径,当你的`aidatatang_200zh`路径为`/data/aidatatang_200zh/corpus/train`时,`<datasets_root>` 为 `/data/`
`<datasets_name>` 为数据集名称。
`<datasets_path>` 为数据集处理后的保存路径。
`<number>` 为数据集处理时进程数根据CPU情况调整大小。
#### 2.3.2 新增数据预处理:
```shell
python pre.py <datasets_root> \
-d <datasets_name> \
-o <datasets_path> \
-n <number> \
-s
```
当新增数据集时,应加 `-s` 选择数据拼接,不加则为覆盖。
#### 2.3.3 synthesizer模型训练
超参数文件路径:`models/synthesizer/hparams.py`,需将`MockingBird/control/cli/synthesizer_train.py`移成`MockingBird/synthesizer_train.py`结构。
```shell
python synthesizer_train.py <name> <datasets_path> \
-m <out_dir>
```
其中 `<name>` 是训练产生文件的名称,可自行修改。
其中 `<datasets_path>` 是经过 `Step 2.2.1` 处理过后的数据集路径。
其中 `<out_dir> `为训练时所有数据的保存路径。
### 2.4 vocoder模型训练
vocoder模型对生成效果影响不大已预置3款。
#### 2.4.1 数据预处理
```shell
python vocoder_preprocess.py <datasets_root> \
-m <synthesizer_model_path>
```
其中`<datasets_root>`为你数据集路径。
其中 `<synthesizer_model_path>`为synthesizer模型地址。
#### 2.4.2 wavernn声码器训练:
```
python vocoder_train.py <name> <datasets_root>
```
#### 2.4.3 hifigan声码器训练:
```
python vocoder_train.py <name> <datasets_root> hifigan
```
#### 2.4.4 fregan声码器训练:
```
python vocoder_train.py <name> <datasets_root> \
--config config.json fregan
```
将GAN声码器的训练切换为多GPU模式修改`GAN`文件夹下`.json`文件中的`num_gpus`参数。
## 3.致谢
### 3.1 项目致谢
该库一开始从仅支持英语的[Real-Time-Voice-Cloning](https://github.com/CorentinJ/Real-Time-Voice-Cloning) 分叉出来的,鸣谢作者。
### 3.2 论文致谢
| URL | Designation | 标题 | 实现源码 |
| --- | ----------- | ----- | --------------------- |
| [1803.09017](https://arxiv.org/abs/1803.09017) | GlobalStyleToken (synthesizer)| Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis | 本代码库 |
| [2010.05646](https://arxiv.org/abs/2010.05646) | HiFi-GAN (vocoder)| Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis | 本代码库 |
| [2106.02297](https://arxiv.org/abs/2106.02297) | Fre-GAN (vocoder)| Fre-GAN: Adversarial Frequency-consistent Audio Synthesis | 本代码库 |
|[**1806.04558**](https://arxiv.org/pdf/1806.04558.pdf) | SV2TTS | Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis | 本代码库 |
|[1802.08435](https://arxiv.org/pdf/1802.08435.pdf) | WaveRNN (vocoder) | Efficient Neural Audio Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN) |
|[1703.10135](https://arxiv.org/pdf/1703.10135.pdf) | Tacotron (synthesizer) | Tacotron: Towards End-to-End Speech Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN)
|[1710.10467](https://arxiv.org/pdf/1710.10467.pdf) | GE2E (encoder)| Generalized End-To-End Loss for Speaker Verification | 本代码库 |
### 3.3 开发者致谢
作为AI领域的从业者我们不仅乐于开发一些具有里程碑意义的算法项目同时也乐于分享项目以及开发过程中收获的喜悦。
因此你们的使用是对我们项目的最大认可。同时当你们在项目使用中遇到一些问题时欢迎你们随时在issue上留言。你们的指正这对于项目的后续优化具有十分重大的的意义。
为了表示感谢,我们将在本项目中留下各位开发者信息以及相对应的贡献。
- ------------------------------------------------ 开 发 者 贡 献 内 容 ---------------------------------------------------------------------------------