mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
commit
98d38d84c3
223
README-LINUX-CN.md
Normal file
223
README-LINUX-CN.md
Normal file
|
@ -0,0 +1,223 @@
|
|||
## 实时语音克隆 - 中文/普通话
|
||||
![mockingbird](https://user-images.githubusercontent.com/12797292/131216767-6eb251d6-14fc-4951-8324-2722f0cd4c63.jpg)
|
||||
|
||||
[![MIT License](https://img.shields.io/badge/license-MIT-blue.svg?style=flat)](http://choosealicense.com/licenses/mit/)
|
||||
|
||||
### [English](README.md) | 中文
|
||||
|
||||
### [DEMO VIDEO](https://www.bilibili.com/video/BV17Q4y1B7mY/) | [Wiki教程](https://github.com/babysor/MockingBird/wiki/Quick-Start-(Newbie)) | [训练教程](https://vaj2fgg8yn.feishu.cn/docs/doccn7kAbr3SJz0KM0SIDJ0Xnhd)
|
||||
|
||||
## 特性
|
||||
🌍 **中文** 支持普通话并使用多种中文数据集进行测试:aidatatang_200zh, magicdata, aishell3, biaobei, MozillaCommonVoice, data_aishell 等
|
||||
|
||||
🤩 **Easy & Awesome** 仅需下载或新训练合成器(synthesizer)就有良好效果,复用预训练的编码器/声码器,或实时的HiFi-GAN作为vocoder
|
||||
|
||||
🌍 **Webserver Ready** 可伺服你的训练结果,供远程调用。
|
||||
|
||||
🤩 **感谢各位小伙伴的支持,本项目将开启新一轮的更新**
|
||||
|
||||
## 1.快速开始
|
||||
### 1.1 建议环境
|
||||
- Ubuntu 18.04
|
||||
- Cuda 11.7 && CuDNN 8.5.0
|
||||
- Python 3.8 或 3.9
|
||||
- Pytorch 2.0.1 <post cuda-11.7>
|
||||
### 1.2 环境配置
|
||||
```shell
|
||||
# 下载前建议更换国内镜像源
|
||||
|
||||
conda create -n sound python=3.9
|
||||
|
||||
conda activate sound
|
||||
|
||||
git clone https://github.com/babysor/MockingBird.git
|
||||
|
||||
cd MockingBird
|
||||
|
||||
pip install -r requirements.txt
|
||||
|
||||
pip install webrtcvad-wheels
|
||||
|
||||
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
|
||||
```
|
||||
|
||||
### 1.3 模型准备
|
||||
> 当实在没有设备或者不想慢慢调试,可以使用社区贡献的模型(欢迎持续分享):
|
||||
|
||||
| 作者 | 下载链接 | 效果预览 | 信息 |
|
||||
| --- | ----------- | ----- | ----- |
|
||||
| 作者 | https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g [百度盘链接](https://pan.baidu.com/s/1iONvRxmkI-t1nHqxKytY3g) 4j5d | | 75k steps 用3个开源数据集混合训练
|
||||
| 作者 | https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw [百度盘链接](https://pan.baidu.com/s/1fMh9IlgKJlL2PIiRTYDUvw) 提取码:om7f | | 25k steps 用3个开源数据集混合训练, 切换到tag v0.0.1使用
|
||||
|@FawenYo | https://drive.google.com/file/d/1H-YGOUHpmqKxJ9FRc6vAjPuqQki24UbC/view?usp=sharing [百度盘链接](https://pan.baidu.com/s/1vSYXO4wsLyjnF3Unl-Xoxg) 提取码:1024 | [input](https://github.com/babysor/MockingBird/wiki/audio/self_test.mp3) [output](https://github.com/babysor/MockingBird/wiki/audio/export.wav) | 200k steps 台湾口音需切换到tag v0.0.1使用
|
||||
|@miven| https://pan.baidu.com/s/1PI-hM3sn5wbeChRryX-RCQ 提取码:2021 | https://www.bilibili.com/video/BV1uh411B7AD/ | 150k steps 注意:根据[issue](https://github.com/babysor/MockingBird/issues/37)修复 并切换到tag v0.0.1使用
|
||||
|
||||
### 1.4 文件结构准备
|
||||
文件结构准备如下所示,算法将自动遍历synthesizer下的.pt模型文件。
|
||||
```
|
||||
# 以第一个 pretrained-11-7-21_75k.pt 为例
|
||||
|
||||
└── data
|
||||
└── ckpt
|
||||
└── synthesizer
|
||||
└── pretrained-11-7-21_75k.pt
|
||||
```
|
||||
### 1.5 运行
|
||||
```
|
||||
python web.py
|
||||
```
|
||||
|
||||
## 2.模型训练
|
||||
### 2.1 数据准备
|
||||
#### 2.1.1 数据下载
|
||||
``` shell
|
||||
# aidatatang_200zh
|
||||
|
||||
wget https://openslr.elda.org/resources/62/aidatatang_200zh.tgz
|
||||
```
|
||||
``` shell
|
||||
# MAGICDATA
|
||||
|
||||
wget https://openslr.magicdatatech.com/resources/68/train_set.tar.gz
|
||||
|
||||
wget https://openslr.magicdatatech.com/resources/68/dev_set.tar.gz
|
||||
|
||||
wget https://openslr.magicdatatech.com/resources/68/test_set.tar.gz
|
||||
```
|
||||
``` shell
|
||||
# AISHELL-3
|
||||
|
||||
wget https://openslr.elda.org/resources/93/data_aishell3.tgz
|
||||
```
|
||||
```shell
|
||||
# Aishell
|
||||
|
||||
wget https://openslr.elda.org/resources/33/data_aishell.tgz
|
||||
```
|
||||
#### 2.1.2 数据批量解压
|
||||
```shell
|
||||
# 该指令为解压当前目录下的所有压缩文件
|
||||
|
||||
for gz in *.gz; do tar -zxvf $gz; done
|
||||
```
|
||||
### 2.2 encoder模型训练
|
||||
#### 2.2.1 数据预处理:
|
||||
需要先在`pre.py `头部加入:
|
||||
```python
|
||||
import torch
|
||||
torch.multiprocessing.set_start_method('spawn', force=True)
|
||||
```
|
||||
使用以下指令对数据预处理:
|
||||
```shell
|
||||
python pre.py <datasets_root> \
|
||||
-d <datasets_name>
|
||||
```
|
||||
其中`<datasets_root>`为原数据集路径,`<datasets_name>` 为数据集名称。
|
||||
|
||||
支持 `librispeech_other`,`voxceleb1`,`aidatatang_200zh`,使用逗号分割处理多数据集。
|
||||
|
||||
### 2.2.2 encoder模型训练:
|
||||
超参数文件路径:`models/encoder/hparams.py`
|
||||
```shell
|
||||
python encoder_train.py <name> \
|
||||
<datasets_root>/SV2TTS/encoder
|
||||
```
|
||||
其中 `<name>` 是训练产生文件的名称,可自行修改。
|
||||
|
||||
其中 `<datasets_root>` 是经过 `Step 2.1.1` 处理过后的数据集路径。
|
||||
#### 2.2.3 开启encoder模型训练数据可视化(可选)
|
||||
```shell
|
||||
visdom
|
||||
```
|
||||
|
||||
### 2.3 synthesizer模型训练
|
||||
#### 2.3.1 数据预处理:
|
||||
```shell
|
||||
python pre.py <datasets_root> \
|
||||
-d <datasets_name> \
|
||||
-o <datasets_path> \
|
||||
-n <number>
|
||||
```
|
||||
`<datasets_root>` 为原数据集路径,当你的`aidatatang_200zh`路径为`/data/aidatatang_200zh/corpus/train`时,`<datasets_root>` 为 `/data/`。
|
||||
|
||||
`<datasets_name>` 为数据集名称。
|
||||
|
||||
`<datasets_path>` 为数据集处理后的保存路径。
|
||||
|
||||
`<number>` 为数据集处理时进程数,根据CPU情况调整大小。
|
||||
|
||||
#### 2.3.2 新增数据预处理:
|
||||
```shell
|
||||
python pre.py <datasets_root> \
|
||||
-d <datasets_name> \
|
||||
-o <datasets_path> \
|
||||
-n <number> \
|
||||
-s
|
||||
```
|
||||
当新增数据集时,应加 `-s` 选择数据拼接,不加则为覆盖。
|
||||
#### 2.3.3 synthesizer模型训练:
|
||||
超参数文件路径:`models/synthesizer/hparams.py`,需将`MockingBird/control/cli/synthesizer_train.py`移成`MockingBird/synthesizer_train.py`结构。
|
||||
```shell
|
||||
python synthesizer_train.py <name> <datasets_path> \
|
||||
-m <out_dir>
|
||||
```
|
||||
其中 `<name>` 是训练产生文件的名称,可自行修改。
|
||||
|
||||
其中 `<datasets_path>` 是经过 `Step 2.2.1` 处理过后的数据集路径。
|
||||
|
||||
其中 `<out_dir> `为训练时所有数据的保存路径。
|
||||
|
||||
### 2.4 vocoder模型训练
|
||||
vocoder模型对生成效果影响不大,已预置3款。
|
||||
#### 2.4.1 数据预处理
|
||||
```shell
|
||||
python vocoder_preprocess.py <datasets_root> \
|
||||
-m <synthesizer_model_path>
|
||||
```
|
||||
|
||||
其中`<datasets_root>`为你数据集路径。
|
||||
|
||||
其中 `<synthesizer_model_path>`为synthesizer模型地址。
|
||||
|
||||
#### 2.4.2 wavernn声码器训练:
|
||||
```
|
||||
python vocoder_train.py <name> <datasets_root>
|
||||
```
|
||||
#### 2.4.3 hifigan声码器训练:
|
||||
```
|
||||
python vocoder_train.py <name> <datasets_root> hifigan
|
||||
```
|
||||
#### 2.4.4 fregan声码器训练:
|
||||
```
|
||||
python vocoder_train.py <name> <datasets_root> \
|
||||
--config config.json fregan
|
||||
```
|
||||
将GAN声码器的训练切换为多GPU模式:修改`GAN`文件夹下`.json`文件中的`num_gpus`参数。
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## 3.致谢
|
||||
### 3.1 项目致谢
|
||||
该库一开始从仅支持英语的[Real-Time-Voice-Cloning](https://github.com/CorentinJ/Real-Time-Voice-Cloning) 分叉出来的,鸣谢作者。
|
||||
### 3.2 论文致谢
|
||||
| URL | Designation | 标题 | 实现源码 |
|
||||
| --- | ----------- | ----- | --------------------- |
|
||||
| [1803.09017](https://arxiv.org/abs/1803.09017) | GlobalStyleToken (synthesizer)| Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis | 本代码库 |
|
||||
| [2010.05646](https://arxiv.org/abs/2010.05646) | HiFi-GAN (vocoder)| Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis | 本代码库 |
|
||||
| [2106.02297](https://arxiv.org/abs/2106.02297) | Fre-GAN (vocoder)| Fre-GAN: Adversarial Frequency-consistent Audio Synthesis | 本代码库 |
|
||||
|[**1806.04558**](https://arxiv.org/pdf/1806.04558.pdf) | SV2TTS | Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis | 本代码库 |
|
||||
|[1802.08435](https://arxiv.org/pdf/1802.08435.pdf) | WaveRNN (vocoder) | Efficient Neural Audio Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN) |
|
||||
|[1703.10135](https://arxiv.org/pdf/1703.10135.pdf) | Tacotron (synthesizer) | Tacotron: Towards End-to-End Speech Synthesis | [fatchord/WaveRNN](https://github.com/fatchord/WaveRNN)
|
||||
|[1710.10467](https://arxiv.org/pdf/1710.10467.pdf) | GE2E (encoder)| Generalized End-To-End Loss for Speaker Verification | 本代码库 |
|
||||
|
||||
### 3.3 开发者致谢
|
||||
|
||||
作为AI领域的从业者,我们不仅乐于开发一些具有里程碑意义的算法项目,同时也乐于分享项目以及开发过程中收获的喜悦。
|
||||
|
||||
因此,你们的使用是对我们项目的最大认可。同时当你们在项目使用中遇到一些问题时,欢迎你们随时在issue上留言。你们的指正这对于项目的后续优化具有十分重大的的意义。
|
||||
|
||||
为了表示感谢,我们将在本项目中留下各位开发者信息以及相对应的贡献。
|
||||
|
||||
- ------------------------------------------------ 开 发 者 贡 献 内 容 ---------------------------------------------------------------------------------
|
||||
|
Loading…
Reference in New Issue
Block a user