Concat GST output instead of adding directly with original output

This commit is contained in:
babysor00 2021-10-23 10:28:32 +08:00
parent 724194a4de
commit 7c58fe01d1

View File

@ -4,6 +4,7 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from synthesizer.models.global_style_token import GlobalStyleToken from synthesizer.models.global_style_token import GlobalStyleToken
from synthesizer.gst_hyperparameters import GSTHyperparameters as gst_hp
class HighwayNetwork(nn.Module): class HighwayNetwork(nn.Module):
@ -254,12 +255,12 @@ class Decoder(nn.Module):
self.prenet = PreNet(n_mels, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1], self.prenet = PreNet(n_mels, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1],
dropout=dropout) dropout=dropout)
self.attn_net = LSA(decoder_dims) self.attn_net = LSA(decoder_dims)
self.attn_rnn = nn.GRUCell(encoder_dims + prenet_dims[1] + speaker_embedding_size, decoder_dims) self.attn_rnn = nn.GRUCell(encoder_dims + prenet_dims[1] + speaker_embedding_size + gst_hp.E, decoder_dims)
self.rnn_input = nn.Linear(encoder_dims + decoder_dims + speaker_embedding_size, lstm_dims) self.rnn_input = nn.Linear(encoder_dims + decoder_dims + speaker_embedding_size + gst_hp.E, lstm_dims)
self.res_rnn1 = nn.LSTMCell(lstm_dims, lstm_dims) self.res_rnn1 = nn.LSTMCell(lstm_dims, lstm_dims)
self.res_rnn2 = nn.LSTMCell(lstm_dims, lstm_dims) self.res_rnn2 = nn.LSTMCell(lstm_dims, lstm_dims)
self.mel_proj = nn.Linear(lstm_dims, n_mels * self.max_r, bias=False) self.mel_proj = nn.Linear(lstm_dims, n_mels * self.max_r, bias=False)
self.stop_proj = nn.Linear(encoder_dims + speaker_embedding_size + lstm_dims, 1) self.stop_proj = nn.Linear(encoder_dims + speaker_embedding_size + lstm_dims + gst_hp.E, 1)
def zoneout(self, prev, current, p=0.1): def zoneout(self, prev, current, p=0.1):
device = next(self.parameters()).device # Use same device as parameters device = next(self.parameters()).device # Use same device as parameters
@ -336,7 +337,7 @@ class Tacotron(nn.Module):
self.speaker_embedding_size = speaker_embedding_size self.speaker_embedding_size = speaker_embedding_size
self.encoder = Encoder(embed_dims, num_chars, encoder_dims, self.encoder = Encoder(embed_dims, num_chars, encoder_dims,
encoder_K, num_highways, dropout) encoder_K, num_highways, dropout)
self.encoder_proj = nn.Linear(encoder_dims + speaker_embedding_size, decoder_dims, bias=False) self.encoder_proj = nn.Linear(encoder_dims + speaker_embedding_size + gst_hp.E, decoder_dims, bias=False)
self.gst = GlobalStyleToken() self.gst = GlobalStyleToken()
self.decoder = Decoder(n_mels, encoder_dims, decoder_dims, lstm_dims, self.decoder = Decoder(n_mels, encoder_dims, decoder_dims, lstm_dims,
dropout, speaker_embedding_size) dropout, speaker_embedding_size)
@ -379,7 +380,7 @@ class Tacotron(nn.Module):
go_frame = torch.zeros(batch_size, self.n_mels, device=device) go_frame = torch.zeros(batch_size, self.n_mels, device=device)
# Need an initial context vector # Need an initial context vector
context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device) context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size + gst_hp.E, device=device)
# SV2TTS: Run the encoder with the speaker embedding # SV2TTS: Run the encoder with the speaker embedding
# The projection avoids unnecessary matmuls in the decoder loop # The projection avoids unnecessary matmuls in the decoder loop
@ -388,7 +389,7 @@ class Tacotron(nn.Module):
if self.gst is not None: if self.gst is not None:
style_embed = self.gst(speaker_embedding) style_embed = self.gst(speaker_embedding)
style_embed = style_embed.expand_as(encoder_seq) style_embed = style_embed.expand_as(encoder_seq)
encoder_seq = encoder_seq + style_embed encoder_seq = torch.cat((encoder_seq, style_embed), 2)
encoder_seq_proj = self.encoder_proj(encoder_seq) encoder_seq_proj = self.encoder_proj(encoder_seq)
# Need a couple of lists for outputs # Need a couple of lists for outputs
@ -440,23 +441,24 @@ class Tacotron(nn.Module):
go_frame = torch.zeros(batch_size, self.n_mels, device=device) go_frame = torch.zeros(batch_size, self.n_mels, device=device)
# Need an initial context vector # Need an initial context vector
context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device) context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size + gst_hp.E, device=device)
# SV2TTS: Run the encoder with the speaker embedding # SV2TTS: Run the encoder with the speaker embedding
# The projection avoids unnecessary matmuls in the decoder loop # The projection avoids unnecessary matmuls in the decoder loop
encoder_seq = self.encoder(x, speaker_embedding) encoder_seq = self.encoder(x, speaker_embedding)
# put after encoder # put after encoder
if self.gst is not None and style_idx >= 0 and style_idx < 10: if self.gst is not None:
gst_embed = self.gst.stl.embed.cpu().data.numpy() #[0, number_token] if style_idx >= 0 and style_idx < 10:
gst_embed = np.tile(gst_embed, (1, 8)) gst_embed = self.gst.stl.embed.cpu().data.numpy() #[0, number_token]
scale = np.zeros(512) gst_embed = np.tile(gst_embed, (1, 8))
scale[:] = 0.3 scale = np.zeros(512)
speaker_embedding = (gst_embed[style_idx] * scale).astype(np.float32) scale[:] = 0.3
speaker_embedding = torch.from_numpy(np.tile(speaker_embedding, (x.shape[0], 1))).to(device) speaker_embedding = (gst_embed[style_idx] * scale).astype(np.float32)
speaker_embedding = torch.from_numpy(np.tile(speaker_embedding, (x.shape[0], 1))).to(device)
style_embed = self.gst(speaker_embedding) style_embed = self.gst(speaker_embedding)
style_embed = style_embed.expand_as(encoder_seq) style_embed = style_embed.expand_as(encoder_seq)
encoder_seq = encoder_seq + style_embed encoder_seq = torch.cat((encoder_seq, style_embed), 2)
encoder_seq_proj = self.encoder_proj(encoder_seq) encoder_seq_proj = self.encoder_proj(encoder_seq)
# Need a couple of lists for outputs # Need a couple of lists for outputs