mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
Allow to train encoder
This commit is contained in:
parent
cb82fcfe58
commit
790d11a58b
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -17,5 +17,7 @@
|
|||
*.sh
|
||||
synthesizer/saved_models/*
|
||||
vocoder/saved_models/*
|
||||
encoder/saved_models/*
|
||||
cp_hifigan/*
|
||||
!vocoder/saved_models/pretrained/*
|
||||
!vocoder/saved_models/pretrained/*
|
||||
!encoder/saved_models/pretrained.pt
|
|
@ -117,6 +117,15 @@ def _preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir,
|
|||
logger.finalize()
|
||||
print("Done preprocessing %s.\n" % dataset_name)
|
||||
|
||||
def preprocess_aidatatang_200zh(datasets_root: Path, out_dir: Path, skip_existing=False):
|
||||
dataset_name = "aidatatang_200zh"
|
||||
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir)
|
||||
if not dataset_root:
|
||||
return
|
||||
# Preprocess all speakers
|
||||
speaker_dirs = list(dataset_root.joinpath("corpus", "train").glob("*"))
|
||||
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, "wav",
|
||||
skip_existing, logger)
|
||||
|
||||
def preprocess_librispeech(datasets_root: Path, out_dir: Path, skip_existing=False):
|
||||
for dataset_name in librispeech_datasets["train"]["other"]:
|
||||
|
|
Binary file not shown.
|
@ -1,4 +1,4 @@
|
|||
from encoder.preprocess import preprocess_librispeech, preprocess_voxceleb1, preprocess_voxceleb2
|
||||
from encoder.preprocess import preprocess_librispeech, preprocess_voxceleb1, preprocess_voxceleb2, preprocess_aidatatang_200zh
|
||||
from utils.argutils import print_args
|
||||
from pathlib import Path
|
||||
import argparse
|
||||
|
@ -10,17 +10,7 @@ if __name__ == "__main__":
|
|||
parser = argparse.ArgumentParser(
|
||||
description="Preprocesses audio files from datasets, encodes them as mel spectrograms and "
|
||||
"writes them to the disk. This will allow you to train the encoder. The "
|
||||
"datasets required are at least one of VoxCeleb1, VoxCeleb2 and LibriSpeech. "
|
||||
"Ideally, you should have all three. You should extract them as they are "
|
||||
"after having downloaded them and put them in a same directory, e.g.:\n"
|
||||
"-[datasets_root]\n"
|
||||
" -LibriSpeech\n"
|
||||
" -train-other-500\n"
|
||||
" -VoxCeleb1\n"
|
||||
" -wav\n"
|
||||
" -vox1_meta.csv\n"
|
||||
" -VoxCeleb2\n"
|
||||
" -dev",
|
||||
"datasets required are at least one of LibriSpeech, VoxCeleb1, VoxCeleb2, aidatatang_200zh. ",
|
||||
formatter_class=MyFormatter
|
||||
)
|
||||
parser.add_argument("datasets_root", type=Path, help=\
|
||||
|
@ -29,7 +19,7 @@ if __name__ == "__main__":
|
|||
"Path to the output directory that will contain the mel spectrograms. If left out, "
|
||||
"defaults to <datasets_root>/SV2TTS/encoder/")
|
||||
parser.add_argument("-d", "--datasets", type=str,
|
||||
default="librispeech_other,voxceleb1,voxceleb2", help=\
|
||||
default="librispeech_other,voxceleb1,aidatatang_200zh", help=\
|
||||
"Comma-separated list of the name of the datasets you want to preprocess. Only the train "
|
||||
"set of these datasets will be used. Possible names: librispeech_other, voxceleb1, "
|
||||
"voxceleb2.")
|
||||
|
@ -63,6 +53,7 @@ if __name__ == "__main__":
|
|||
"librispeech_other": preprocess_librispeech,
|
||||
"voxceleb1": preprocess_voxceleb1,
|
||||
"voxceleb2": preprocess_voxceleb2,
|
||||
"aidatatang_200zh": preprocess_aidatatang_200zh,
|
||||
}
|
||||
args = vars(args)
|
||||
for dataset in args.pop("datasets"):
|
Loading…
Reference in New Issue
Block a user