mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
Add preprocessing mode
This commit is contained in:
parent
c5998bfe71
commit
70cc3988d3
@ -86,7 +86,7 @@ class Output(BaseModel):
|
||||
streamlit_app.pyplot(fig)
|
||||
|
||||
|
||||
def main(input: Input) -> Output:
|
||||
def synthesize(input: Input) -> Output:
|
||||
"""synthesize(合成)"""
|
||||
# load models
|
||||
encoder.load_model(Path(input.encoder.value))
|
||||
|
@ -101,7 +101,7 @@ class Output(BaseModel):
|
||||
ax.set_title("mel spectrogram(Result Audio)")
|
||||
streamlit_app.pyplot(fig)
|
||||
|
||||
def main(input: Input) -> Output:
|
||||
def convert(input: Input) -> Output:
|
||||
"""convert(转换)"""
|
||||
# load models
|
||||
extractor = Extractor.load_model(Path(input.extractor.value))
|
||||
|
@ -1,5 +1,5 @@
|
||||
import base64
|
||||
from typing import Any, Dict
|
||||
from typing import Any, Dict, overload
|
||||
|
||||
|
||||
class FileContent(str):
|
||||
@ -27,3 +27,20 @@ class FileContent(str):
|
||||
return FileContent(base64.b64encode(value).decode())
|
||||
else:
|
||||
raise Exception("Wrong type")
|
||||
|
||||
# # 暂时无法使用,因为浏览器中没有考虑选择文件夹
|
||||
# class DirectoryContent(FileContent):
|
||||
# @classmethod
|
||||
# def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None:
|
||||
# field_schema.update(format="path")
|
||||
|
||||
# @classmethod
|
||||
# def validate(cls, value: Any) -> "DirectoryContent":
|
||||
# if isinstance(value, DirectoryContent):
|
||||
# return value
|
||||
# elif isinstance(value, str):
|
||||
# return DirectoryContent(value)
|
||||
# elif isinstance(value, (bytes, bytearray, memoryview)):
|
||||
# return DirectoryContent(base64.b64encode(value).decode())
|
||||
# else:
|
||||
# raise Exception("Wrong type")
|
||||
|
@ -112,7 +112,6 @@ class Opyrator:
|
||||
else:
|
||||
self.function = func
|
||||
|
||||
self._name = "Opyrator"
|
||||
self._action = "Execute"
|
||||
self._input_type = None
|
||||
self._output_type = None
|
||||
|
@ -38,6 +38,11 @@ def is_single_file_property(property: Dict) -> bool:
|
||||
return property.get("format") == "byte"
|
||||
|
||||
|
||||
def is_single_directory_property(property: Dict) -> bool:
|
||||
if property.get("type") != "string":
|
||||
return False
|
||||
return property.get("format") == "path"
|
||||
|
||||
def is_multi_enum_property(property: Dict, references: Dict) -> bool:
|
||||
if property.get("type") != "array":
|
||||
return False
|
||||
|
@ -110,7 +110,7 @@ class InputUI:
|
||||
# The rendering also returns the current state of input data
|
||||
self._session_state.input_data = self._input_class.render_input_ui( # type: ignore
|
||||
st, self._session_state.input_data
|
||||
).dict()
|
||||
)
|
||||
return
|
||||
|
||||
# print(self._schema_properties)
|
||||
@ -802,25 +802,31 @@ class OutputUI:
|
||||
|
||||
def getOpyrator(mode: str) -> Opyrator:
|
||||
if mode == None or mode.startswith('VC'):
|
||||
from mkgui.app_vc import main
|
||||
return Opyrator(main)
|
||||
from mkgui.app import main
|
||||
return Opyrator(main)
|
||||
from mkgui.app_vc import convert
|
||||
return Opyrator(convert)
|
||||
if mode == None or mode.startswith('预处理'):
|
||||
from mkgui.preprocess import preprocess
|
||||
return Opyrator(preprocess)
|
||||
from mkgui.app import synthesize
|
||||
return Opyrator(synthesize)
|
||||
|
||||
|
||||
def render_streamlit_ui() -> None:
|
||||
# init
|
||||
session_state = st.session_state
|
||||
session_state.input_data = {}
|
||||
session_state.mode = None
|
||||
|
||||
with st.spinner("Loading MockingBird GUI. Please wait..."):
|
||||
session_state.mode = st.sidebar.selectbox(
|
||||
'模式选择',
|
||||
("AI拟音", "VC拟音")
|
||||
( "AI拟音", "VC拟音", "预处理")
|
||||
)
|
||||
opyrator = getOpyrator(session_state.mode)
|
||||
title = opyrator.name
|
||||
if "mode" in session_state:
|
||||
mode = session_state.mode
|
||||
else:
|
||||
mode = ""
|
||||
opyrator = getOpyrator(mode)
|
||||
title = opyrator.name + mode
|
||||
|
||||
col1, col2, _ = st.columns(3)
|
||||
col2.title(title)
|
||||
|
91
mkgui/preprocess.py
Normal file
91
mkgui/preprocess.py
Normal file
@ -0,0 +1,91 @@
|
||||
from pydantic import BaseModel, Field
|
||||
import os
|
||||
from pathlib import Path
|
||||
from enum import Enum
|
||||
from typing import Any
|
||||
|
||||
|
||||
# Constants
|
||||
EXT_MODELS_DIRT = "ppg_extractor\\saved_models"
|
||||
ENC_MODELS_DIRT = "encoder\\saved_models"
|
||||
|
||||
|
||||
if os.path.isdir(EXT_MODELS_DIRT):
|
||||
extractors = Enum('extractors', list((file.name, file) for file in Path(EXT_MODELS_DIRT).glob("**/*.pt")))
|
||||
print("Loaded extractor models: " + str(len(extractors)))
|
||||
if os.path.isdir(ENC_MODELS_DIRT):
|
||||
encoders = Enum('encoders', list((file.name, file) for file in Path(ENC_MODELS_DIRT).glob("**/*.pt")))
|
||||
print("Loaded encoders models: " + str(len(encoders)))
|
||||
|
||||
class Model(str, Enum):
|
||||
VC_PPG2MEL = "ppg2mel"
|
||||
|
||||
class Dataset(str, Enum):
|
||||
AIDATATANG_200ZH = "aidatatang_200zh"
|
||||
AIDATATANG_200ZH_S = "aidatatang_200zh_s"
|
||||
|
||||
class Input(BaseModel):
|
||||
# def render_input_ui(st, input) -> Dict:
|
||||
# input["selected_dataset"] = st.selectbox(
|
||||
# '选择数据集',
|
||||
# ("aidatatang_200zh", "aidatatang_200zh_s")
|
||||
# )
|
||||
# return input
|
||||
model: Model = Field(
|
||||
Model.VC_PPG2MEL, title="目标模型",
|
||||
)
|
||||
dataset: Dataset = Field(
|
||||
Dataset.AIDATATANG_200ZH, title="数据集选择",
|
||||
)
|
||||
datasets_root: str = Field(
|
||||
..., alias="数据集根目录", description="输入数据集根目录(相对/绝对)",
|
||||
format=True,
|
||||
example="..\\trainning_data\\"
|
||||
)
|
||||
output_root: str = Field(
|
||||
..., alias="输出根目录", description="输出结果根目录(相对/绝对)",
|
||||
format=True,
|
||||
example="..\\trainning_data\\"
|
||||
)
|
||||
n_processes: int = Field(
|
||||
2, alias="处理线程数", description="根据CPU线程数来设置",
|
||||
le=32, ge=1
|
||||
)
|
||||
extractor: extractors = Field(
|
||||
..., alias="特征提取模型",
|
||||
description="选择PPG特征提取模型文件."
|
||||
)
|
||||
encoder: encoders = Field(
|
||||
..., alias="语音编码模型",
|
||||
description="选择语音编码模型文件."
|
||||
)
|
||||
|
||||
class AudioEntity(BaseModel):
|
||||
content: bytes
|
||||
mel: Any
|
||||
|
||||
class Output(BaseModel):
|
||||
__root__: tuple[str, int]
|
||||
|
||||
def render_output_ui(self, streamlit_app, input) -> None: # type: ignore
|
||||
"""Custom output UI.
|
||||
If this method is implmeneted, it will be used instead of the default Output UI renderer.
|
||||
"""
|
||||
sr, count = self.__root__
|
||||
streamlit_app.subheader(f"Dataset {sr} done processed total of {count}")
|
||||
|
||||
def preprocess(input: Input) -> Output:
|
||||
"""Preprocess(预处理)"""
|
||||
finished = 0
|
||||
if input.model == Model.VC_PPG2MEL:
|
||||
from ppg2mel.preprocess import preprocess_dataset
|
||||
finished = preprocess_dataset(
|
||||
datasets_root=Path(input.datasets_root),
|
||||
dataset=input.dataset,
|
||||
out_dir=Path(input.output_root),
|
||||
n_processes=input.n_processes,
|
||||
ppg_encoder_model_fpath=Path(input.extractor.value),
|
||||
speaker_encoder_model=Path(input.encoder.value)
|
||||
)
|
||||
# TODO: pass useful return code
|
||||
return Output(__root__=(input.dataset, finished))
|
@ -110,3 +110,4 @@ def preprocess_dataset(datasets_root, dataset, out_dir, n_processes, ppg_encoder
|
||||
t_fid_file.close()
|
||||
d_fid_file.close()
|
||||
e_fid_file.close()
|
||||
return len(wav_file_list)
|
||||
|
Loading…
x
Reference in New Issue
Block a user