From 6a793cea8488ad40fcad6ab30f9d82bc920ac114 Mon Sep 17 00:00:00 2001 From: flysmart <66983043+flysmart@users.noreply.github.com> Date: Wed, 25 May 2022 23:29:59 +0800 Subject: [PATCH] Added missing files for Fre-GAN (#579) * The new vocoder Fre-GAN is now supported * Improved some fregan details * Fixed the problem that the existing model could not be loaded to continue training when training GAN * Updated reference papers * GAN training now supports DistributedDataParallel (DDP) * Added requirements.txt * GAN training uses single card training by default * Added note about GAN vocoder training with multiple GPUs * Added missing files for Fre-GAN --- vocoder/fregan/stft_loss.py | 136 ++++++++++++++++++++++++++++++++++++ 1 file changed, 136 insertions(+) create mode 100644 vocoder/fregan/stft_loss.py diff --git a/vocoder/fregan/stft_loss.py b/vocoder/fregan/stft_loss.py new file mode 100644 index 0000000..e474474 --- /dev/null +++ b/vocoder/fregan/stft_loss.py @@ -0,0 +1,136 @@ +# -*- coding: utf-8 -*- + +# Copyright 2019 Tomoki Hayashi +# MIT License (https://opensource.org/licenses/MIT) + +"""STFT-based Loss modules.""" + +import torch +import torch.nn.functional as F + + +def stft(x, fft_size, hop_size, win_length, window): + """Perform STFT and convert to magnitude spectrogram. + Args: + x (Tensor): Input signal tensor (B, T). + fft_size (int): FFT size. + hop_size (int): Hop size. + win_length (int): Window length. + window (str): Window function type. + Returns: + Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1). + """ + x_stft = torch.stft(x, fft_size, hop_size, win_length, window) + real = x_stft[..., 0] + imag = x_stft[..., 1] + + # NOTE(kan-bayashi): clamp is needed to avoid nan or inf + return torch.sqrt(torch.clamp(real ** 2 + imag ** 2, min=1e-7)).transpose(2, 1) + + +class SpectralConvergengeLoss(torch.nn.Module): + """Spectral convergence loss module.""" + + def __init__(self): + """Initilize spectral convergence loss module.""" + super(SpectralConvergengeLoss, self).__init__() + + def forward(self, x_mag, y_mag): + """Calculate forward propagation. + Args: + x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). + y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). + Returns: + Tensor: Spectral convergence loss value. + """ + return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro") + + +class LogSTFTMagnitudeLoss(torch.nn.Module): + """Log STFT magnitude loss module.""" + + def __init__(self): + """Initilize los STFT magnitude loss module.""" + super(LogSTFTMagnitudeLoss, self).__init__() + + def forward(self, x_mag, y_mag): + """Calculate forward propagation. + Args: + x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins). + y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins). + Returns: + Tensor: Log STFT magnitude loss value. + """ + return F.l1_loss(torch.log(y_mag), torch.log(x_mag)) + + +class STFTLoss(torch.nn.Module): + """STFT loss module.""" + + def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window"): + """Initialize STFT loss module.""" + super(STFTLoss, self).__init__() + self.fft_size = fft_size + self.shift_size = shift_size + self.win_length = win_length + self.window = getattr(torch, window)(win_length) + self.spectral_convergenge_loss = SpectralConvergengeLoss() + self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss() + + def forward(self, x, y): + """Calculate forward propagation. + Args: + x (Tensor): Predicted signal (B, T). + y (Tensor): Groundtruth signal (B, T). + Returns: + Tensor: Spectral convergence loss value. + Tensor: Log STFT magnitude loss value. + """ + x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window.to(x.get_device())) + y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(x.get_device())) + sc_loss = self.spectral_convergenge_loss(x_mag, y_mag) + mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag) + + return sc_loss, mag_loss + + +class MultiResolutionSTFTLoss(torch.nn.Module): + """Multi resolution STFT loss module.""" + + def __init__(self, + fft_sizes=[1024, 2048, 512], + hop_sizes=[120, 240, 50], + win_lengths=[600, 1200, 240], + window="hann_window"): + """Initialize Multi resolution STFT loss module. + Args: + fft_sizes (list): List of FFT sizes. + hop_sizes (list): List of hop sizes. + win_lengths (list): List of window lengths. + window (str): Window function type. + """ + super(MultiResolutionSTFTLoss, self).__init__() + assert len(fft_sizes) == len(hop_sizes) == len(win_lengths) + self.stft_losses = torch.nn.ModuleList() + for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths): + self.stft_losses += [STFTLoss(fs, ss, wl, window)] + + def forward(self, x, y): + """Calculate forward propagation. + Args: + x (Tensor): Predicted signal (B, T). + y (Tensor): Groundtruth signal (B, T). + Returns: + Tensor: Multi resolution spectral convergence loss value. + Tensor: Multi resolution log STFT magnitude loss value. + """ + sc_loss = 0.0 + mag_loss = 0.0 + for f in self.stft_losses: + sc_l, mag_l = f(x, y) + sc_loss += sc_l + mag_loss += mag_l + sc_loss /= len(self.stft_losses) + mag_loss /= len(self.stft_losses) + + return sc_loss, mag_loss \ No newline at end of file