Fix inference on cpu device (#241)

This commit is contained in:
zzxiang 2021-11-29 22:10:07 +09:00 committed by GitHub
parent a4daf42868
commit 4728863f9d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 8 additions and 6 deletions

View File

@ -62,7 +62,7 @@ class Synthesizer:
stop_threshold=hparams.tts_stop_threshold,
speaker_embedding_size=hparams.speaker_embedding_size).to(self.device)
self._model.load(self.model_fpath)
self._model.load(self.model_fpath, self.device)
self._model.eval()
if self.verbose:

View File

@ -470,7 +470,9 @@ class Tacotron(nn.Module):
# put after encoder
if hparams.use_gst and self.gst is not None:
if style_idx >= 0 and style_idx < 10:
query = torch.zeros(1, 1, self.gst.stl.attention.num_units).cuda()
query = torch.zeros(1, 1, self.gst.stl.attention.num_units)
if device.type == 'cuda':
query = query.cuda()
gst_embed = torch.tanh(self.gst.stl.embed)
key = gst_embed[style_idx].unsqueeze(0).expand(1, -1, -1)
style_embed = self.gst.stl.attention(query, key)
@ -539,9 +541,9 @@ class Tacotron(nn.Module):
with open(path, "a") as f:
print(msg, file=f)
def load(self, path, optimizer=None):
def load(self, path, device, optimizer=None):
# Use device of model params as location for loaded state
checkpoint = torch.load(str(path))
checkpoint = torch.load(str(path), map_location=device)
self.load_state_dict(checkpoint["model_state"], strict=False)
if "optimizer_state" in checkpoint and optimizer is not None:

View File

@ -45,7 +45,7 @@ def run_synthesis(in_dir, out_dir, model_dir, hparams):
model_dir = Path(model_dir)
model_fpath = model_dir.joinpath(model_dir.stem).with_suffix(".pt")
print("\nLoading weights at %s" % model_fpath)
model.load(model_fpath)
model.load(model_fpath, device)
print("Tacotron weights loaded from step %d" % model.step)
# Synthesize using same reduction factor as the model is currently trained

View File

@ -111,7 +111,7 @@ def train(run_id: str, syn_dir: str, models_dir: str, save_every: int,
else:
print("\nLoading weights at %s" % weights_fpath)
model.load(weights_fpath, optimizer)
model.load(weights_fpath, device, optimizer)
print("Tacotron weights loaded from step %d" % model.step)
# Initialize the dataset