mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
The new vocoder Fre-GAN is now supported (#546)
* The new vocoder Fre-GAN is now supported * Improved some fregan details
This commit is contained in:
parent
c5d03fb3cb
commit
0caed984e3
|
@ -87,7 +87,9 @@
|
|||
* 训练hifigan声码器:
|
||||
`python vocoder_train.py <trainid> <datasets_root> hifigan`
|
||||
> `<trainid>`替换为你想要的标识,同一标识再次训练时会延续原模型
|
||||
|
||||
* 训练fregan声码器:
|
||||
`python vocoder_train.py <trainid> <datasets_root> --config config.json fregan`
|
||||
> `<trainid>`替换为你想要的标识,同一标识再次训练时会延续原模型
|
||||
### 3. 启动程序或工具箱
|
||||
您可以尝试使用以下命令:
|
||||
|
||||
|
|
|
@ -3,6 +3,7 @@ from encoder import inference as encoder
|
|||
from synthesizer.inference import Synthesizer
|
||||
from vocoder.wavernn import inference as rnn_vocoder
|
||||
from vocoder.hifigan import inference as gan_vocoder
|
||||
from vocoder.fregan import inference as fgan_vocoder
|
||||
from pathlib import Path
|
||||
from time import perf_counter as timer
|
||||
from toolbox.utterance import Utterance
|
||||
|
@ -451,6 +452,15 @@ class Toolbox:
|
|||
return
|
||||
if len(model_config_fpaths) > 0:
|
||||
model_config_fpath = model_config_fpaths[0]
|
||||
elif model_fpath.name is not None and model_fpath.name.find("fregan") > -1:
|
||||
vocoder = fgan_vocoder
|
||||
self.ui.log("set fregan as vocoder")
|
||||
# search a config file
|
||||
model_config_fpaths = list(model_fpath.parent.rglob("*.json"))
|
||||
if self.vc_mode and self.ui.current_extractor_fpath is None:
|
||||
return
|
||||
if len(model_config_fpaths) > 0:
|
||||
model_config_fpath = model_config_fpaths[0]
|
||||
else:
|
||||
vocoder = rnn_vocoder
|
||||
self.ui.log("set wavernn as vocoder")
|
||||
|
|
129
vocoder/fregan/.gitignore
vendored
Normal file
129
vocoder/fregan/.gitignore
vendored
Normal file
|
@ -0,0 +1,129 @@
|
|||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
pip-wheel-metadata/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
21
vocoder/fregan/LICENSE
Normal file
21
vocoder/fregan/LICENSE
Normal file
|
@ -0,0 +1,21 @@
|
|||
MIT License
|
||||
|
||||
Copyright (c) 2021 Rishikesh (ऋषिकेश)
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
25
vocoder/fregan/README.md
Normal file
25
vocoder/fregan/README.md
Normal file
|
@ -0,0 +1,25 @@
|
|||
# Fre-GAN Vocoder
|
||||
[Fre-GAN: Adversarial Frequency-consistent Audio Synthesis](https://arxiv.org/abs/2106.02297)
|
||||
|
||||
## Training:
|
||||
```
|
||||
python train.py --config config.json
|
||||
```
|
||||
|
||||
## Citation:
|
||||
```
|
||||
@misc{kim2021fregan,
|
||||
title={Fre-GAN: Adversarial Frequency-consistent Audio Synthesis},
|
||||
author={Ji-Hoon Kim and Sang-Hoon Lee and Ji-Hyun Lee and Seong-Whan Lee},
|
||||
year={2021},
|
||||
eprint={2106.02297},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={eess.AS}
|
||||
}
|
||||
```
|
||||
## Note
|
||||
* For more complete and end to end Voice cloning or Text to Speech (TTS) toolbox please visit [Deepsync Technologies](https://deepsync.co/).
|
||||
|
||||
## References:
|
||||
* [Hi-Fi-GAN repo](https://github.com/jik876/hifi-gan)
|
||||
* [WaveSNet repo](https://github.com/LiQiufu/WaveSNet)
|
41
vocoder/fregan/config.json
Normal file
41
vocoder/fregan/config.json
Normal file
|
@ -0,0 +1,41 @@
|
|||
{
|
||||
"resblock": "1",
|
||||
"num_gpus": 0,
|
||||
"batch_size": 16,
|
||||
"learning_rate": 0.0002,
|
||||
"adam_b1": 0.8,
|
||||
"adam_b2": 0.99,
|
||||
"lr_decay": 0.999,
|
||||
"seed": 1234,
|
||||
|
||||
|
||||
"upsample_rates": [5,5,2,2,2],
|
||||
"upsample_kernel_sizes": [10,10,4,4,4],
|
||||
"upsample_initial_channel": 512,
|
||||
"resblock_kernel_sizes": [3,7,11],
|
||||
"resblock_dilation_sizes": [[1, 3, 5, 7], [1,3,5,7], [1,3,5,7]],
|
||||
|
||||
"segment_size": 6400,
|
||||
"num_mels": 80,
|
||||
"num_freq": 1025,
|
||||
"n_fft": 1024,
|
||||
"hop_size": 200,
|
||||
"win_size": 800,
|
||||
|
||||
"sampling_rate": 16000,
|
||||
|
||||
"fmin": 0,
|
||||
"fmax": 7600,
|
||||
"fmax_for_loss": null,
|
||||
|
||||
"num_workers": 4,
|
||||
|
||||
"dist_config": {
|
||||
"dist_backend": "nccl",
|
||||
"dist_url": "tcp://localhost:54321",
|
||||
"world_size": 1
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
303
vocoder/fregan/discriminator.py
Normal file
303
vocoder/fregan/discriminator.py
Normal file
|
@ -0,0 +1,303 @@
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.nn as nn
|
||||
from torch.nn import Conv1d, AvgPool1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, spectral_norm
|
||||
from vocoder.fregan.utils import get_padding
|
||||
from vocoder.fregan.stft_loss import stft
|
||||
from vocoder.fregan.dwt import DWT_1D
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
|
||||
class SpecDiscriminator(nn.Module):
|
||||
"""docstring for Discriminator."""
|
||||
|
||||
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
|
||||
super(SpecDiscriminator, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.fft_size = fft_size
|
||||
self.shift_size = shift_size
|
||||
self.win_length = win_length
|
||||
self.window = getattr(torch, window)(win_length)
|
||||
self.discriminators = nn.ModuleList([
|
||||
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
||||
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))),
|
||||
])
|
||||
|
||||
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
|
||||
|
||||
def forward(self, y):
|
||||
|
||||
fmap = []
|
||||
with torch.no_grad():
|
||||
y = y.squeeze(1)
|
||||
y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device()))
|
||||
y = y.unsqueeze(1)
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y = d(y)
|
||||
y = F.leaky_relu(y, LRELU_SLOPE)
|
||||
fmap.append(y)
|
||||
|
||||
y = self.out(y)
|
||||
fmap.append(y)
|
||||
|
||||
return torch.flatten(y, 1, -1), fmap
|
||||
|
||||
class MultiResSpecDiscriminator(torch.nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
fft_sizes=[1024, 2048, 512],
|
||||
hop_sizes=[120, 240, 50],
|
||||
win_lengths=[600, 1200, 240],
|
||||
window="hann_window"):
|
||||
|
||||
super(MultiResSpecDiscriminator, self).__init__()
|
||||
self.discriminators = nn.ModuleList([
|
||||
SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
|
||||
SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
|
||||
SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)
|
||||
])
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
self.period = period
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.dwt1d = DWT_1D()
|
||||
self.dwt_conv1 = norm_f(Conv1d(2, 1, 1))
|
||||
self.dwt_proj1 = norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0)))
|
||||
self.dwt_conv2 = norm_f(Conv1d(4, 1, 1))
|
||||
self.dwt_proj2 = norm_f(Conv2d(1, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0)))
|
||||
self.dwt_conv3 = norm_f(Conv1d(8, 1, 1))
|
||||
self.dwt_proj3 = norm_f(Conv2d(1, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0)))
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
||||
])
|
||||
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
|
||||
# DWT 1
|
||||
x_d1_high1, x_d1_low1 = self.dwt1d(x)
|
||||
x_d1 = self.dwt_conv1(torch.cat([x_d1_high1, x_d1_low1], dim=1))
|
||||
# 1d to 2d
|
||||
b, c, t = x_d1.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x_d1 = F.pad(x_d1, (0, n_pad), "reflect")
|
||||
t = t + n_pad
|
||||
x_d1 = x_d1.view(b, c, t // self.period, self.period)
|
||||
|
||||
x_d1 = self.dwt_proj1(x_d1)
|
||||
|
||||
# DWT 2
|
||||
x_d2_high1, x_d2_low1 = self.dwt1d(x_d1_high1)
|
||||
x_d2_high2, x_d2_low2 = self.dwt1d(x_d1_low1)
|
||||
x_d2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1))
|
||||
# 1d to 2d
|
||||
b, c, t = x_d2.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x_d2 = F.pad(x_d2, (0, n_pad), "reflect")
|
||||
t = t + n_pad
|
||||
x_d2 = x_d2.view(b, c, t // self.period, self.period)
|
||||
|
||||
x_d2 = self.dwt_proj2(x_d2)
|
||||
|
||||
# DWT 3
|
||||
|
||||
x_d3_high1, x_d3_low1 = self.dwt1d(x_d2_high1)
|
||||
x_d3_high2, x_d3_low2 = self.dwt1d(x_d2_low1)
|
||||
x_d3_high3, x_d3_low3 = self.dwt1d(x_d2_high2)
|
||||
x_d3_high4, x_d3_low4 = self.dwt1d(x_d2_low2)
|
||||
x_d3 = self.dwt_conv3(
|
||||
torch.cat([x_d3_high1, x_d3_low1, x_d3_high2, x_d3_low2, x_d3_high3, x_d3_low3, x_d3_high4, x_d3_low4],
|
||||
dim=1))
|
||||
# 1d to 2d
|
||||
b, c, t = x_d3.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x_d3 = F.pad(x_d3, (0, n_pad), "reflect")
|
||||
t = t + n_pad
|
||||
x_d3 = x_d3.view(b, c, t // self.period, self.period)
|
||||
|
||||
x_d3 = self.dwt_proj3(x_d3)
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (0, n_pad), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
i = 0
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
|
||||
fmap.append(x)
|
||||
if i == 0:
|
||||
x = torch.cat([x, x_d1], dim=2)
|
||||
elif i == 1:
|
||||
x = torch.cat([x, x_d2], dim=2)
|
||||
elif i == 2:
|
||||
x = torch.cat([x, x_d3], dim=2)
|
||||
else:
|
||||
x = x
|
||||
i = i + 1
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class ResWiseMultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(ResWiseMultiPeriodDiscriminator, self).__init__()
|
||||
self.discriminators = nn.ModuleList([
|
||||
DiscriminatorP(2),
|
||||
DiscriminatorP(3),
|
||||
DiscriminatorP(5),
|
||||
DiscriminatorP(7),
|
||||
DiscriminatorP(11),
|
||||
])
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorS(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(DiscriminatorS, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.dwt1d = DWT_1D()
|
||||
self.dwt_conv1 = norm_f(Conv1d(2, 128, 15, 1, padding=7))
|
||||
self.dwt_conv2 = norm_f(Conv1d(4, 128, 41, 2, padding=20))
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
|
||||
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
||||
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
||||
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
||||
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
||||
])
|
||||
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
|
||||
# DWT 1
|
||||
x_d1_high1, x_d1_low1 = self.dwt1d(x)
|
||||
x_d1 = self.dwt_conv1(torch.cat([x_d1_high1, x_d1_low1], dim=1))
|
||||
|
||||
# DWT 2
|
||||
x_d2_high1, x_d2_low1 = self.dwt1d(x_d1_high1)
|
||||
x_d2_high2, x_d2_low2 = self.dwt1d(x_d1_low1)
|
||||
x_d2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1))
|
||||
|
||||
i = 0
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
if i == 0:
|
||||
x = torch.cat([x, x_d1], dim=2)
|
||||
if i == 1:
|
||||
x = torch.cat([x, x_d2], dim=2)
|
||||
i = i + 1
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class ResWiseMultiScaleDiscriminator(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(ResWiseMultiScaleDiscriminator, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.dwt1d = DWT_1D()
|
||||
self.dwt_conv1 = norm_f(Conv1d(2, 1, 1))
|
||||
self.dwt_conv2 = norm_f(Conv1d(4, 1, 1))
|
||||
self.discriminators = nn.ModuleList([
|
||||
DiscriminatorS(use_spectral_norm=True),
|
||||
DiscriminatorS(),
|
||||
DiscriminatorS(),
|
||||
])
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
# DWT 1
|
||||
y_hi, y_lo = self.dwt1d(y)
|
||||
y_1 = self.dwt_conv1(torch.cat([y_hi, y_lo], dim=1))
|
||||
x_d1_high1, x_d1_low1 = self.dwt1d(y_hat)
|
||||
y_hat_1 = self.dwt_conv1(torch.cat([x_d1_high1, x_d1_low1], dim=1))
|
||||
|
||||
# DWT 2
|
||||
x_d2_high1, x_d2_low1 = self.dwt1d(y_hi)
|
||||
x_d2_high2, x_d2_low2 = self.dwt1d(y_lo)
|
||||
y_2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1))
|
||||
|
||||
x_d2_high1, x_d2_low1 = self.dwt1d(x_d1_high1)
|
||||
x_d2_high2, x_d2_low2 = self.dwt1d(x_d1_low1)
|
||||
y_hat_2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1))
|
||||
|
||||
for i, d in enumerate(self.discriminators):
|
||||
|
||||
if i == 1:
|
||||
y = y_1
|
||||
y_hat = y_hat_1
|
||||
if i == 2:
|
||||
y = y_2
|
||||
y_hat = y_hat_2
|
||||
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
76
vocoder/fregan/dwt.py
Normal file
76
vocoder/fregan/dwt.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
# Copyright (c) 2019, Adobe Inc. All rights reserved.
|
||||
#
|
||||
# This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
|
||||
# 4.0 International Public License. To view a copy of this license, visit
|
||||
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.
|
||||
|
||||
# DWT code borrow from https://github.com/LiQiufu/WaveSNet/blob/12cb9d24208c3d26917bf953618c30f0c6b0f03d/DWT_IDWT/DWT_IDWT_layer.py
|
||||
|
||||
|
||||
import pywt
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
__all__ = ['DWT_1D']
|
||||
Pad_Mode = ['constant', 'reflect', 'replicate', 'circular']
|
||||
|
||||
|
||||
class DWT_1D(nn.Module):
|
||||
def __init__(self, pad_type='reflect', wavename='haar',
|
||||
stride=2, in_channels=1, out_channels=None, groups=None,
|
||||
kernel_size=None, trainable=False):
|
||||
|
||||
super(DWT_1D, self).__init__()
|
||||
self.trainable = trainable
|
||||
self.kernel_size = kernel_size
|
||||
if not self.trainable:
|
||||
assert self.kernel_size == None
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = self.in_channels if out_channels == None else out_channels
|
||||
self.groups = self.in_channels if groups == None else groups
|
||||
assert isinstance(self.groups, int) and self.in_channels % self.groups == 0
|
||||
self.stride = stride
|
||||
assert self.stride == 2
|
||||
self.wavename = wavename
|
||||
self.pad_type = pad_type
|
||||
assert self.pad_type in Pad_Mode
|
||||
self.get_filters()
|
||||
self.initialization()
|
||||
|
||||
def get_filters(self):
|
||||
wavelet = pywt.Wavelet(self.wavename)
|
||||
band_low = torch.tensor(wavelet.rec_lo)
|
||||
band_high = torch.tensor(wavelet.rec_hi)
|
||||
length_band = band_low.size()[0]
|
||||
self.kernel_size = length_band if self.kernel_size == None else self.kernel_size
|
||||
assert self.kernel_size >= length_band
|
||||
a = (self.kernel_size - length_band) // 2
|
||||
b = - (self.kernel_size - length_band - a)
|
||||
b = None if b == 0 else b
|
||||
self.filt_low = torch.zeros(self.kernel_size)
|
||||
self.filt_high = torch.zeros(self.kernel_size)
|
||||
self.filt_low[a:b] = band_low
|
||||
self.filt_high[a:b] = band_high
|
||||
|
||||
def initialization(self):
|
||||
self.filter_low = self.filt_low[None, None, :].repeat((self.out_channels, self.in_channels // self.groups, 1))
|
||||
self.filter_high = self.filt_high[None, None, :].repeat((self.out_channels, self.in_channels // self.groups, 1))
|
||||
if torch.cuda.is_available():
|
||||
self.filter_low = self.filter_low.cuda()
|
||||
self.filter_high = self.filter_high.cuda()
|
||||
if self.trainable:
|
||||
self.filter_low = nn.Parameter(self.filter_low)
|
||||
self.filter_high = nn.Parameter(self.filter_high)
|
||||
if self.kernel_size % 2 == 0:
|
||||
self.pad_sizes = [self.kernel_size // 2 - 1, self.kernel_size // 2 - 1]
|
||||
else:
|
||||
self.pad_sizes = [self.kernel_size // 2, self.kernel_size // 2]
|
||||
|
||||
def forward(self, input):
|
||||
assert isinstance(input, torch.Tensor)
|
||||
assert len(input.size()) == 3
|
||||
assert input.size()[1] == self.in_channels
|
||||
input = F.pad(input, pad=self.pad_sizes, mode=self.pad_type)
|
||||
return F.conv1d(input, self.filter_low.to(input.device), stride=self.stride, groups=self.groups), \
|
||||
F.conv1d(input, self.filter_high.to(input.device), stride=self.stride, groups=self.groups)
|
210
vocoder/fregan/generator.py
Normal file
210
vocoder/fregan/generator.py
Normal file
|
@ -0,0 +1,210 @@
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.nn as nn
|
||||
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from vocoder.fregan.utils import init_weights, get_padding
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5, 7)):
|
||||
super(ResBlock1, self).__init__()
|
||||
self.h = h
|
||||
self.convs1 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[3],
|
||||
padding=get_padding(kernel_size, dilation[3])))
|
||||
])
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1)))
|
||||
])
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
def forward(self, x):
|
||||
for c1, c2 in zip(self.convs1, self.convs2):
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
xt = c1(xt)
|
||||
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock2(torch.nn.Module):
|
||||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
|
||||
super(ResBlock2, self).__init__()
|
||||
self.h = h
|
||||
self.convs = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1])))
|
||||
])
|
||||
self.convs.apply(init_weights)
|
||||
|
||||
def forward(self, x):
|
||||
for c in self.convs:
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class FreGAN(torch.nn.Module):
|
||||
def __init__(self, h, top_k=4):
|
||||
super(FreGAN, self).__init__()
|
||||
self.h = h
|
||||
|
||||
self.num_kernels = len(h.resblock_kernel_sizes)
|
||||
self.num_upsamples = len(h.upsample_rates)
|
||||
self.upsample_rates = h.upsample_rates
|
||||
self.up_kernels = h.upsample_kernel_sizes
|
||||
self.cond_level = self.num_upsamples - top_k
|
||||
self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3))
|
||||
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
self.cond_up = nn.ModuleList()
|
||||
self.res_output = nn.ModuleList()
|
||||
upsample_ = 1
|
||||
kr = 80
|
||||
|
||||
for i, (u, k) in enumerate(zip(self.upsample_rates, self.up_kernels)):
|
||||
# self.ups.append(weight_norm(
|
||||
# ConvTranspose1d(h.upsample_initial_channel // (2 ** i), h.upsample_initial_channel // (2 ** (i + 1)),
|
||||
# k, u, padding=(k - u) // 2)))
|
||||
self.ups.append(weight_norm(ConvTranspose1d(h.upsample_initial_channel//(2**i),
|
||||
h.upsample_initial_channel//(2**(i+1)),
|
||||
k, u, padding=(u//2 + u%2), output_padding=u%2)))
|
||||
|
||||
if i > (self.num_upsamples - top_k):
|
||||
self.res_output.append(
|
||||
nn.Sequential(
|
||||
nn.Upsample(scale_factor=u, mode='nearest'),
|
||||
weight_norm(nn.Conv1d(h.upsample_initial_channel // (2 ** i),
|
||||
h.upsample_initial_channel // (2 ** (i + 1)), 1))
|
||||
)
|
||||
)
|
||||
if i >= (self.num_upsamples - top_k):
|
||||
self.cond_up.append(
|
||||
weight_norm(
|
||||
ConvTranspose1d(kr, h.upsample_initial_channel // (2 ** i),
|
||||
self.up_kernels[i - 1], self.upsample_rates[i - 1],
|
||||
padding=(self.upsample_rates[i-1]//2+self.upsample_rates[i-1]%2), output_padding=self.upsample_rates[i-1]%2))
|
||||
)
|
||||
kr = h.upsample_initial_channel // (2 ** i)
|
||||
|
||||
upsample_ *= u
|
||||
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
||||
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(h, ch, k, d))
|
||||
|
||||
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
||||
self.ups.apply(init_weights)
|
||||
self.conv_post.apply(init_weights)
|
||||
self.cond_up.apply(init_weights)
|
||||
self.res_output.apply(init_weights)
|
||||
|
||||
def forward(self, x):
|
||||
mel = x
|
||||
x = self.conv_pre(x)
|
||||
output = None
|
||||
for i in range(self.num_upsamples):
|
||||
if i >= self.cond_level:
|
||||
mel = self.cond_up[i - self.cond_level](mel)
|
||||
x += mel
|
||||
if i > self.cond_level:
|
||||
if output is None:
|
||||
output = self.res_output[i - self.cond_level - 1](x)
|
||||
else:
|
||||
output = self.res_output[i - self.cond_level - 1](output)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
x = self.ups[i](x)
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
x = xs / self.num_kernels
|
||||
if output is not None:
|
||||
output = output + x
|
||||
|
||||
x = F.leaky_relu(output)
|
||||
x = self.conv_post(x)
|
||||
x = torch.tanh(x)
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
for l in self.cond_up:
|
||||
remove_weight_norm(l)
|
||||
for l in self.res_output:
|
||||
remove_weight_norm(l[1])
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
|
||||
|
||||
'''
|
||||
to run this, fix
|
||||
from . import ResStack
|
||||
into
|
||||
from res_stack import ResStack
|
||||
'''
|
||||
if __name__ == '__main__':
|
||||
'''
|
||||
torch.Size([3, 80, 10])
|
||||
torch.Size([3, 1, 2000])
|
||||
4527362
|
||||
'''
|
||||
with open('config.json') as f:
|
||||
data = f.read()
|
||||
from utils import AttrDict
|
||||
import json
|
||||
json_config = json.loads(data)
|
||||
h = AttrDict(json_config)
|
||||
model = FreGAN(h)
|
||||
|
||||
c = torch.randn(3, 80, 10) # (B, channels, T).
|
||||
print(c.shape)
|
||||
|
||||
y = model(c) # (B, 1, T ** prod(upsample_scales)
|
||||
print(y.shape)
|
||||
assert y.shape == torch.Size([3, 1, 2560]) # For normal melgan torch.Size([3, 1, 2560])
|
||||
|
||||
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
print(pytorch_total_params)
|
74
vocoder/fregan/inference.py
Normal file
74
vocoder/fregan/inference.py
Normal file
|
@ -0,0 +1,74 @@
|
|||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import os
|
||||
import json
|
||||
import torch
|
||||
from utils.util import AttrDict
|
||||
from vocoder.fregan.generator import FreGAN
|
||||
|
||||
generator = None # type: FreGAN
|
||||
output_sample_rate = None
|
||||
_device = None
|
||||
|
||||
|
||||
def load_checkpoint(filepath, device):
|
||||
assert os.path.isfile(filepath)
|
||||
print("Loading '{}'".format(filepath))
|
||||
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||
print("Complete.")
|
||||
return checkpoint_dict
|
||||
|
||||
|
||||
def load_model(weights_fpath, config_fpath=None, verbose=True):
|
||||
global generator, _device, output_sample_rate
|
||||
|
||||
if verbose:
|
||||
print("Building fregan")
|
||||
|
||||
if config_fpath == None:
|
||||
model_config_fpaths = list(weights_fpath.parent.rglob("*.json"))
|
||||
if len(model_config_fpaths) > 0:
|
||||
config_fpath = model_config_fpaths[0]
|
||||
else:
|
||||
config_fpath = "./vocoder/fregan/config.json"
|
||||
with open(config_fpath) as f:
|
||||
data = f.read()
|
||||
json_config = json.loads(data)
|
||||
h = AttrDict(json_config)
|
||||
output_sample_rate = h.sampling_rate
|
||||
torch.manual_seed(h.seed)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
# _model = _model.cuda()
|
||||
_device = torch.device('cuda')
|
||||
else:
|
||||
_device = torch.device('cpu')
|
||||
|
||||
generator = FreGAN(h).to(_device)
|
||||
state_dict_g = load_checkpoint(
|
||||
weights_fpath, _device
|
||||
)
|
||||
generator.load_state_dict(state_dict_g['generator'])
|
||||
generator.eval()
|
||||
generator.remove_weight_norm()
|
||||
|
||||
|
||||
def is_loaded():
|
||||
return generator is not None
|
||||
|
||||
|
||||
def infer_waveform(mel, progress_callback=None):
|
||||
|
||||
if generator is None:
|
||||
raise Exception("Please load fre-gan in memory before using it")
|
||||
|
||||
mel = torch.FloatTensor(mel).to(_device)
|
||||
mel = mel.unsqueeze(0)
|
||||
|
||||
with torch.no_grad():
|
||||
y_g_hat = generator(mel)
|
||||
audio = y_g_hat.squeeze()
|
||||
audio = audio.cpu().numpy()
|
||||
|
||||
return audio, output_sample_rate
|
||||
|
35
vocoder/fregan/loss.py
Normal file
35
vocoder/fregan/loss.py
Normal file
|
@ -0,0 +1,35 @@
|
|||
import torch
|
||||
|
||||
|
||||
def feature_loss(fmap_r, fmap_g):
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
|
||||
return loss*2
|
||||
|
||||
|
||||
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
||||
loss = 0
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
r_loss = torch.mean((1-dr)**2)
|
||||
g_loss = torch.mean(dg**2)
|
||||
loss += (r_loss + g_loss)
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
|
||||
return loss, r_losses, g_losses
|
||||
|
||||
|
||||
def generator_loss(disc_outputs):
|
||||
loss = 0
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
l = torch.mean((1-dg)**2)
|
||||
gen_losses.append(l)
|
||||
loss += l
|
||||
|
||||
return loss, gen_losses
|
176
vocoder/fregan/meldataset.py
Normal file
176
vocoder/fregan/meldataset.py
Normal file
|
@ -0,0 +1,176 @@
|
|||
import math
|
||||
import os
|
||||
import random
|
||||
import torch
|
||||
import torch.utils.data
|
||||
import numpy as np
|
||||
from librosa.util import normalize
|
||||
from scipy.io.wavfile import read
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
def load_wav(full_path):
|
||||
sampling_rate, data = read(full_path)
|
||||
return data, sampling_rate
|
||||
|
||||
|
||||
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
||||
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression(x, C=1):
|
||||
return np.exp(x) / C
|
||||
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
return torch.exp(x) / C
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes):
|
||||
output = dynamic_range_compression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
def spectral_de_normalize_torch(magnitudes):
|
||||
output = dynamic_range_decompression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
mel_basis = {}
|
||||
hann_window = {}
|
||||
|
||||
|
||||
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||||
if torch.min(y) < -1.:
|
||||
print('min value is ', torch.min(y))
|
||||
if torch.max(y) > 1.:
|
||||
print('max value is ', torch.max(y))
|
||||
|
||||
global mel_basis, hann_window
|
||||
if fmax not in mel_basis:
|
||||
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
||||
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
||||
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
||||
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
|
||||
|
||||
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def get_dataset_filelist(a):
|
||||
#with open(a.input_training_file, 'r', encoding='utf-8') as fi:
|
||||
# training_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
|
||||
# for x in fi.read().split('\n') if len(x) > 0]
|
||||
|
||||
#with open(a.input_validation_file, 'r', encoding='utf-8') as fi:
|
||||
# validation_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
|
||||
# for x in fi.read().split('\n') if len(x) > 0]
|
||||
files = os.listdir(a.input_wavs_dir)
|
||||
random.shuffle(files)
|
||||
files = [os.path.join(a.input_wavs_dir, f) for f in files]
|
||||
training_files = files[: -int(len(files) * 0.05)]
|
||||
validation_files = files[-int(len(files) * 0.05):]
|
||||
return training_files, validation_files
|
||||
|
||||
|
||||
class MelDataset(torch.utils.data.Dataset):
|
||||
def __init__(self, training_files, segment_size, n_fft, num_mels,
|
||||
hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1,
|
||||
device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None):
|
||||
self.audio_files = training_files
|
||||
random.seed(1234)
|
||||
if shuffle:
|
||||
random.shuffle(self.audio_files)
|
||||
self.segment_size = segment_size
|
||||
self.sampling_rate = sampling_rate
|
||||
self.split = split
|
||||
self.n_fft = n_fft
|
||||
self.num_mels = num_mels
|
||||
self.hop_size = hop_size
|
||||
self.win_size = win_size
|
||||
self.fmin = fmin
|
||||
self.fmax = fmax
|
||||
self.fmax_loss = fmax_loss
|
||||
self.cached_wav = None
|
||||
self.n_cache_reuse = n_cache_reuse
|
||||
self._cache_ref_count = 0
|
||||
self.device = device
|
||||
self.fine_tuning = fine_tuning
|
||||
self.base_mels_path = base_mels_path
|
||||
|
||||
def __getitem__(self, index):
|
||||
filename = self.audio_files[index]
|
||||
if self._cache_ref_count == 0:
|
||||
#audio, sampling_rate = load_wav(filename)
|
||||
#audio = audio / MAX_WAV_VALUE
|
||||
audio = np.load(filename)
|
||||
if not self.fine_tuning:
|
||||
audio = normalize(audio) * 0.95
|
||||
self.cached_wav = audio
|
||||
#if sampling_rate != self.sampling_rate:
|
||||
# raise ValueError("{} SR doesn't match target {} SR".format(
|
||||
# sampling_rate, self.sampling_rate))
|
||||
self._cache_ref_count = self.n_cache_reuse
|
||||
else:
|
||||
audio = self.cached_wav
|
||||
self._cache_ref_count -= 1
|
||||
|
||||
audio = torch.FloatTensor(audio)
|
||||
audio = audio.unsqueeze(0)
|
||||
|
||||
if not self.fine_tuning:
|
||||
if self.split:
|
||||
if audio.size(1) >= self.segment_size:
|
||||
max_audio_start = audio.size(1) - self.segment_size
|
||||
audio_start = random.randint(0, max_audio_start)
|
||||
audio = audio[:, audio_start:audio_start+self.segment_size]
|
||||
else:
|
||||
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
|
||||
|
||||
mel = mel_spectrogram(audio, self.n_fft, self.num_mels,
|
||||
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax,
|
||||
center=False)
|
||||
else:
|
||||
mel_path = os.path.join(self.base_mels_path, "mel" + "-" + filename.split("/")[-1].split("-")[-1])
|
||||
mel = np.load(mel_path).T
|
||||
#mel = np.load(
|
||||
# os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.npy'))
|
||||
mel = torch.from_numpy(mel)
|
||||
|
||||
if len(mel.shape) < 3:
|
||||
mel = mel.unsqueeze(0)
|
||||
|
||||
if self.split:
|
||||
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
|
||||
|
||||
if audio.size(1) >= self.segment_size:
|
||||
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
|
||||
mel = mel[:, :, mel_start:mel_start + frames_per_seg]
|
||||
audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size]
|
||||
else:
|
||||
mel = torch.nn.functional.pad(mel, (0, frames_per_seg - mel.size(2)), 'constant')
|
||||
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
|
||||
|
||||
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels,
|
||||
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss,
|
||||
center=False)
|
||||
|
||||
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audio_files)
|
201
vocoder/fregan/modules.py
Normal file
201
vocoder/fregan/modules.py
Normal file
|
@ -0,0 +1,201 @@
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
class KernelPredictor(torch.nn.Module):
|
||||
''' Kernel predictor for the location-variable convolutions
|
||||
'''
|
||||
|
||||
def __init__(self,
|
||||
cond_channels,
|
||||
conv_in_channels,
|
||||
conv_out_channels,
|
||||
conv_layers,
|
||||
conv_kernel_size=3,
|
||||
kpnet_hidden_channels=64,
|
||||
kpnet_conv_size=3,
|
||||
kpnet_dropout=0.0,
|
||||
kpnet_nonlinear_activation="LeakyReLU",
|
||||
kpnet_nonlinear_activation_params={"negative_slope": 0.1}
|
||||
):
|
||||
'''
|
||||
Args:
|
||||
cond_channels (int): number of channel for the conditioning sequence,
|
||||
conv_in_channels (int): number of channel for the input sequence,
|
||||
conv_out_channels (int): number of channel for the output sequence,
|
||||
conv_layers (int):
|
||||
kpnet_
|
||||
'''
|
||||
super().__init__()
|
||||
|
||||
self.conv_in_channels = conv_in_channels
|
||||
self.conv_out_channels = conv_out_channels
|
||||
self.conv_kernel_size = conv_kernel_size
|
||||
self.conv_layers = conv_layers
|
||||
|
||||
l_w = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers
|
||||
l_b = conv_out_channels * conv_layers
|
||||
|
||||
padding = (kpnet_conv_size - 1) // 2
|
||||
self.input_conv = torch.nn.Sequential(
|
||||
torch.nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=(5 - 1) // 2, bias=True),
|
||||
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
|
||||
)
|
||||
|
||||
self.residual_conv = torch.nn.Sequential(
|
||||
torch.nn.Dropout(kpnet_dropout),
|
||||
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
|
||||
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
|
||||
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
|
||||
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
|
||||
torch.nn.Dropout(kpnet_dropout),
|
||||
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
|
||||
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
|
||||
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
|
||||
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
|
||||
torch.nn.Dropout(kpnet_dropout),
|
||||
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
|
||||
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
|
||||
torch.nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True),
|
||||
getattr(torch.nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
|
||||
)
|
||||
|
||||
self.kernel_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_w, kpnet_conv_size,
|
||||
padding=padding, bias=True)
|
||||
self.bias_conv = torch.nn.Conv1d(kpnet_hidden_channels, l_b, kpnet_conv_size, padding=padding,
|
||||
bias=True)
|
||||
|
||||
def forward(self, c):
|
||||
'''
|
||||
Args:
|
||||
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
|
||||
Returns:
|
||||
'''
|
||||
batch, cond_channels, cond_length = c.shape
|
||||
|
||||
c = self.input_conv(c)
|
||||
c = c + self.residual_conv(c)
|
||||
k = self.kernel_conv(c)
|
||||
b = self.bias_conv(c)
|
||||
|
||||
kernels = k.contiguous().view(batch,
|
||||
self.conv_layers,
|
||||
self.conv_in_channels,
|
||||
self.conv_out_channels,
|
||||
self.conv_kernel_size,
|
||||
cond_length)
|
||||
bias = b.contiguous().view(batch,
|
||||
self.conv_layers,
|
||||
self.conv_out_channels,
|
||||
cond_length)
|
||||
return kernels, bias
|
||||
|
||||
|
||||
class LVCBlock(torch.nn.Module):
|
||||
''' the location-variable convolutions
|
||||
'''
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
cond_channels,
|
||||
upsample_ratio,
|
||||
conv_layers=4,
|
||||
conv_kernel_size=3,
|
||||
cond_hop_length=256,
|
||||
kpnet_hidden_channels=64,
|
||||
kpnet_conv_size=3,
|
||||
kpnet_dropout=0.0
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.cond_hop_length = cond_hop_length
|
||||
self.conv_layers = conv_layers
|
||||
self.conv_kernel_size = conv_kernel_size
|
||||
self.convs = torch.nn.ModuleList()
|
||||
|
||||
self.upsample = torch.nn.ConvTranspose1d(in_channels, in_channels,
|
||||
kernel_size=upsample_ratio*2, stride=upsample_ratio,
|
||||
padding=upsample_ratio // 2 + upsample_ratio % 2,
|
||||
output_padding=upsample_ratio % 2)
|
||||
|
||||
|
||||
self.kernel_predictor = KernelPredictor(
|
||||
cond_channels=cond_channels,
|
||||
conv_in_channels=in_channels,
|
||||
conv_out_channels=2 * in_channels,
|
||||
conv_layers=conv_layers,
|
||||
conv_kernel_size=conv_kernel_size,
|
||||
kpnet_hidden_channels=kpnet_hidden_channels,
|
||||
kpnet_conv_size=kpnet_conv_size,
|
||||
kpnet_dropout=kpnet_dropout
|
||||
)
|
||||
|
||||
|
||||
for i in range(conv_layers):
|
||||
padding = (3 ** i) * int((conv_kernel_size - 1) / 2)
|
||||
conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=conv_kernel_size, padding=padding, dilation=3 ** i)
|
||||
|
||||
self.convs.append(conv)
|
||||
|
||||
|
||||
def forward(self, x, c):
|
||||
''' forward propagation of the location-variable convolutions.
|
||||
Args:
|
||||
x (Tensor): the input sequence (batch, in_channels, in_length)
|
||||
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
|
||||
|
||||
Returns:
|
||||
Tensor: the output sequence (batch, in_channels, in_length)
|
||||
'''
|
||||
batch, in_channels, in_length = x.shape
|
||||
|
||||
|
||||
kernels, bias = self.kernel_predictor(c)
|
||||
|
||||
x = F.leaky_relu(x, 0.2)
|
||||
x = self.upsample(x)
|
||||
|
||||
for i in range(self.conv_layers):
|
||||
y = F.leaky_relu(x, 0.2)
|
||||
y = self.convs[i](y)
|
||||
y = F.leaky_relu(y, 0.2)
|
||||
|
||||
k = kernels[:, i, :, :, :, :]
|
||||
b = bias[:, i, :, :]
|
||||
y = self.location_variable_convolution(y, k, b, 1, self.cond_hop_length)
|
||||
x = x + torch.sigmoid(y[:, :in_channels, :]) * torch.tanh(y[:, in_channels:, :])
|
||||
return x
|
||||
|
||||
def location_variable_convolution(self, x, kernel, bias, dilation, hop_size):
|
||||
''' perform location-variable convolution operation on the input sequence (x) using the local convolution kernl.
|
||||
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
|
||||
Args:
|
||||
x (Tensor): the input sequence (batch, in_channels, in_length).
|
||||
kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length)
|
||||
bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length)
|
||||
dilation (int): the dilation of convolution.
|
||||
hop_size (int): the hop_size of the conditioning sequence.
|
||||
Returns:
|
||||
(Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length).
|
||||
'''
|
||||
batch, in_channels, in_length = x.shape
|
||||
batch, in_channels, out_channels, kernel_size, kernel_length = kernel.shape
|
||||
|
||||
|
||||
assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched"
|
||||
|
||||
padding = dilation * int((kernel_size - 1) / 2)
|
||||
x = F.pad(x, (padding, padding), 'constant', 0) # (batch, in_channels, in_length + 2*padding)
|
||||
x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding)
|
||||
|
||||
if hop_size < dilation:
|
||||
x = F.pad(x, (0, dilation), 'constant', 0)
|
||||
x = x.unfold(3, dilation,
|
||||
dilation) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
|
||||
x = x[:, :, :, :, :hop_size]
|
||||
x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
|
||||
x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size)
|
||||
|
||||
o = torch.einsum('bildsk,biokl->bolsd', x, kernel)
|
||||
o = o + bias.unsqueeze(-1).unsqueeze(-1)
|
||||
o = o.contiguous().view(batch, out_channels, -1)
|
||||
return o
|
1
vocoder/fregan/requirements.txt
Normal file
1
vocoder/fregan/requirements.txt
Normal file
|
@ -0,0 +1 @@
|
|||
PyWavelets
|
246
vocoder/fregan/train.py
Normal file
246
vocoder/fregan/train.py
Normal file
|
@ -0,0 +1,246 @@
|
|||
import warnings
|
||||
|
||||
warnings.simplefilter(action='ignore', category=FutureWarning)
|
||||
import itertools
|
||||
import os
|
||||
import time
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from torch.utils.data import DistributedSampler, DataLoader
|
||||
from torch.distributed import init_process_group
|
||||
from torch.nn.parallel import DistributedDataParallel
|
||||
from vocoder.fregan.meldataset import MelDataset, mel_spectrogram, get_dataset_filelist
|
||||
from vocoder.fregan.generator import FreGAN
|
||||
from vocoder.fregan.discriminator import ResWiseMultiPeriodDiscriminator, ResWiseMultiScaleDiscriminator
|
||||
from vocoder.fregan.loss import feature_loss, generator_loss, discriminator_loss
|
||||
from vocoder.fregan.utils import plot_spectrogram, scan_checkpoint, load_checkpoint, save_checkpoint
|
||||
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
|
||||
def train(rank, a, h):
|
||||
|
||||
a.checkpoint_path = a.models_dir.joinpath(a.run_id+'_fregan')
|
||||
a.checkpoint_path.mkdir(exist_ok=True)
|
||||
a.training_epochs = 3100
|
||||
a.stdout_interval = 5
|
||||
a.checkpoint_interval = a.backup_every
|
||||
a.summary_interval = 5000
|
||||
a.validation_interval = 1000
|
||||
a.fine_tuning = True
|
||||
|
||||
a.input_wavs_dir = a.syn_dir.joinpath("audio")
|
||||
a.input_mels_dir = a.syn_dir.joinpath("mels")
|
||||
|
||||
if h.num_gpus > 1:
|
||||
init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'],
|
||||
world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank)
|
||||
|
||||
torch.cuda.manual_seed(h.seed)
|
||||
device = torch.device('cuda:{:d}'.format(rank))
|
||||
|
||||
generator = FreGAN(h).to(device)
|
||||
mpd = ResWiseMultiPeriodDiscriminator().to(device)
|
||||
msd = ResWiseMultiScaleDiscriminator().to(device)
|
||||
|
||||
if rank == 0:
|
||||
print(generator)
|
||||
os.makedirs(a.checkpoint_path, exist_ok=True)
|
||||
print("checkpoints directory : ", a.checkpoint_path)
|
||||
|
||||
if os.path.isdir(a.checkpoint_path):
|
||||
cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
|
||||
cp_do = scan_checkpoint(a.checkpoint_path, 'do_')
|
||||
|
||||
steps = 0
|
||||
if cp_g is None or cp_do is None:
|
||||
state_dict_do = None
|
||||
last_epoch = -1
|
||||
else:
|
||||
state_dict_g = load_checkpoint(cp_g, device)
|
||||
state_dict_do = load_checkpoint(cp_do, device)
|
||||
generator.load_state_dict(state_dict_g['generator'])
|
||||
mpd.load_state_dict(state_dict_do['mpd'])
|
||||
msd.load_state_dict(state_dict_do['msd'])
|
||||
steps = state_dict_do['steps'] + 1
|
||||
last_epoch = state_dict_do['epoch']
|
||||
|
||||
if h.num_gpus > 1:
|
||||
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device)
|
||||
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
|
||||
msd = DistributedDataParallel(msd, device_ids=[rank]).to(device)
|
||||
|
||||
optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
|
||||
optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()),
|
||||
h.learning_rate, betas=[h.adam_b1, h.adam_b2])
|
||||
|
||||
if state_dict_do is not None:
|
||||
optim_g.load_state_dict(state_dict_do['optim_g'])
|
||||
optim_d.load_state_dict(state_dict_do['optim_d'])
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
|
||||
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch)
|
||||
|
||||
training_filelist, validation_filelist = get_dataset_filelist(a)
|
||||
|
||||
trainset = MelDataset(training_filelist, h.segment_size, h.n_fft, h.num_mels,
|
||||
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0,
|
||||
shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device,
|
||||
fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir)
|
||||
|
||||
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
|
||||
|
||||
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False,
|
||||
sampler=train_sampler,
|
||||
batch_size=h.batch_size,
|
||||
pin_memory=True,
|
||||
drop_last=True)
|
||||
|
||||
if rank == 0:
|
||||
validset = MelDataset(validation_filelist, h.segment_size, h.n_fft, h.num_mels,
|
||||
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0,
|
||||
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning,
|
||||
base_mels_path=a.input_mels_dir)
|
||||
validation_loader = DataLoader(validset, num_workers=1, shuffle=False,
|
||||
sampler=None,
|
||||
batch_size=1,
|
||||
pin_memory=True,
|
||||
drop_last=True)
|
||||
|
||||
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
|
||||
|
||||
generator.train()
|
||||
mpd.train()
|
||||
msd.train()
|
||||
for epoch in range(max(0, last_epoch), a.training_epochs):
|
||||
if rank == 0:
|
||||
start = time.time()
|
||||
print("Epoch: {}".format(epoch + 1))
|
||||
|
||||
if h.num_gpus > 1:
|
||||
train_sampler.set_epoch(epoch)
|
||||
|
||||
for i, batch in enumerate(train_loader):
|
||||
if rank == 0:
|
||||
start_b = time.time()
|
||||
x, y, _, y_mel = batch
|
||||
x = torch.autograd.Variable(x.to(device, non_blocking=True))
|
||||
y = torch.autograd.Variable(y.to(device, non_blocking=True))
|
||||
y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True))
|
||||
y = y.unsqueeze(1)
|
||||
y_g_hat = generator(x)
|
||||
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size,
|
||||
h.win_size,
|
||||
h.fmin, h.fmax_for_loss)
|
||||
|
||||
|
||||
|
||||
optim_d.zero_grad()
|
||||
|
||||
# MPD
|
||||
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
|
||||
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)
|
||||
|
||||
# MSD
|
||||
y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
|
||||
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)
|
||||
|
||||
loss_disc_all = loss_disc_s + loss_disc_f
|
||||
|
||||
loss_disc_all.backward()
|
||||
optim_d.step()
|
||||
|
||||
# Generator
|
||||
optim_g.zero_grad()
|
||||
|
||||
|
||||
# L1 Mel-Spectrogram Loss
|
||||
loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45
|
||||
|
||||
# sc_loss, mag_loss = stft_loss(y_g_hat[:, :, :y.size(2)].squeeze(1), y.squeeze(1))
|
||||
# loss_mel = h.lambda_aux * (sc_loss + mag_loss) # STFT Loss
|
||||
|
||||
|
||||
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
|
||||
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
|
||||
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
|
||||
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
|
||||
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
|
||||
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
|
||||
loss_gen_all = loss_gen_s + loss_gen_f + (2 * (loss_fm_s + loss_fm_f)) + loss_mel
|
||||
|
||||
|
||||
loss_gen_all.backward()
|
||||
optim_g.step()
|
||||
|
||||
if rank == 0:
|
||||
# STDOUT logging
|
||||
if steps % a.stdout_interval == 0:
|
||||
with torch.no_grad():
|
||||
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()
|
||||
|
||||
print('Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'.
|
||||
format(steps, loss_gen_all, mel_error, time.time() - start_b))
|
||||
|
||||
# checkpointing
|
||||
if steps % a.checkpoint_interval == 0 and steps != 0:
|
||||
checkpoint_path = "{}/g_fregan_{:08d}.pt".format(a.checkpoint_path, steps)
|
||||
save_checkpoint(checkpoint_path,
|
||||
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()})
|
||||
checkpoint_path = "{}/do_fregan_{:08d}.pt".format(a.checkpoint_path, steps)
|
||||
save_checkpoint(checkpoint_path,
|
||||
{'mpd': (mpd.module if h.num_gpus > 1
|
||||
else mpd).state_dict(),
|
||||
'msd': (msd.module if h.num_gpus > 1
|
||||
else msd).state_dict(),
|
||||
'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps,
|
||||
'epoch': epoch})
|
||||
|
||||
# Tensorboard summary logging
|
||||
if steps % a.summary_interval == 0:
|
||||
sw.add_scalar("training/gen_loss_total", loss_gen_all, steps)
|
||||
sw.add_scalar("training/mel_spec_error", mel_error, steps)
|
||||
|
||||
# Validation
|
||||
if steps % a.validation_interval == 0: # and steps != 0:
|
||||
generator.eval()
|
||||
torch.cuda.empty_cache()
|
||||
val_err_tot = 0
|
||||
with torch.no_grad():
|
||||
for j, batch in enumerate(validation_loader):
|
||||
x, y, _, y_mel = batch
|
||||
y_g_hat = generator(x.to(device))
|
||||
y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True))
|
||||
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
|
||||
h.hop_size, h.win_size,
|
||||
h.fmin, h.fmax_for_loss)
|
||||
#val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()
|
||||
|
||||
if j <= 4:
|
||||
if steps == 0:
|
||||
sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate)
|
||||
sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps)
|
||||
|
||||
sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate)
|
||||
y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels,
|
||||
h.sampling_rate, h.hop_size, h.win_size,
|
||||
h.fmin, h.fmax)
|
||||
sw.add_figure('generated/y_hat_spec_{}'.format(j),
|
||||
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps)
|
||||
|
||||
val_err = val_err_tot / (j + 1)
|
||||
sw.add_scalar("validation/mel_spec_error", val_err, steps)
|
||||
|
||||
generator.train()
|
||||
|
||||
steps += 1
|
||||
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
|
||||
if rank == 0:
|
||||
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start)))
|
||||
|
||||
|
65
vocoder/fregan/utils.py
Normal file
65
vocoder/fregan/utils.py
Normal file
|
@ -0,0 +1,65 @@
|
|||
import glob
|
||||
import os
|
||||
import matplotlib
|
||||
import torch
|
||||
from torch.nn.utils import weight_norm
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pylab as plt
|
||||
import shutil
|
||||
|
||||
|
||||
def build_env(config, config_name, path):
|
||||
t_path = os.path.join(path, config_name)
|
||||
if config != t_path:
|
||||
os.makedirs(path, exist_ok=True)
|
||||
shutil.copyfile(config, os.path.join(path, config_name))
|
||||
|
||||
|
||||
def plot_spectrogram(spectrogram):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
||||
interpolation='none')
|
||||
plt.colorbar(im, ax=ax)
|
||||
|
||||
fig.canvas.draw()
|
||||
plt.close()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def apply_weight_norm(m):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
weight_norm(m)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size*dilation - dilation)/2)
|
||||
|
||||
|
||||
def load_checkpoint(filepath, device):
|
||||
assert os.path.isfile(filepath)
|
||||
print("Loading '{}'".format(filepath))
|
||||
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||
print("Complete.")
|
||||
return checkpoint_dict
|
||||
|
||||
|
||||
def save_checkpoint(filepath, obj):
|
||||
print("Saving checkpoint to {}".format(filepath))
|
||||
torch.save(obj, filepath)
|
||||
print("Complete.")
|
||||
|
||||
|
||||
def scan_checkpoint(cp_dir, prefix):
|
||||
pattern = os.path.join(cp_dir, prefix + '????????')
|
||||
cp_list = glob.glob(pattern)
|
||||
if len(cp_list) == 0:
|
||||
return None
|
||||
return sorted(cp_list)[-1]
|
|
@ -1,6 +1,7 @@
|
|||
from utils.argutils import print_args
|
||||
from vocoder.wavernn.train import train
|
||||
from vocoder.hifigan.train import train as train_hifigan
|
||||
from vocoder.fregan.train import train as train_fregan
|
||||
from utils.util import AttrDict
|
||||
from pathlib import Path
|
||||
import argparse
|
||||
|
@ -61,11 +62,18 @@ if __name__ == "__main__":
|
|||
# Process the arguments
|
||||
if args.vocoder_type == "wavernn":
|
||||
# Run the training wavernn
|
||||
delattr(args, 'vocoder_type')
|
||||
delattr(args, 'config')
|
||||
train(**vars(args))
|
||||
elif args.vocoder_type == "hifigan":
|
||||
with open(args.config) as f:
|
||||
json_config = json.load(f)
|
||||
h = AttrDict(json_config)
|
||||
train_hifigan(0, args, h)
|
||||
elif args.vocoder_type == "fregan":
|
||||
with open('vocoder/fregan/config.json') as f:
|
||||
json_config = json.load(f)
|
||||
h = AttrDict(json_config)
|
||||
train_fregan(0, args, h)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user