2023-02-04 14:13:38 +08:00
|
|
|
import os
|
|
|
|
import random
|
|
|
|
import numpy as np
|
2023-02-18 09:31:05 +08:00
|
|
|
import torch.nn.functional as F
|
2023-02-04 14:13:38 +08:00
|
|
|
import torch
|
|
|
|
import torch.utils.data
|
|
|
|
|
2023-02-18 09:31:05 +08:00
|
|
|
from utils.audio_utils import load_wav_to_torch, spectrogram
|
2023-02-04 14:13:38 +08:00
|
|
|
from utils.util import intersperse
|
|
|
|
from models.synthesizer.utils.text import text_to_sequence
|
|
|
|
|
|
|
|
|
|
|
|
"""Multi speaker version"""
|
|
|
|
class VitsDataset(torch.utils.data.Dataset):
|
|
|
|
"""
|
|
|
|
1) loads audio, speaker_id, text pairs
|
|
|
|
2) normalizes text and converts them to sequences of integers
|
|
|
|
3) computes spectrograms from audio files.
|
|
|
|
"""
|
|
|
|
def __init__(self, audio_file_path, hparams):
|
|
|
|
with open(audio_file_path, encoding='utf-8') as f:
|
|
|
|
self.audio_metadata = [line.strip().split('|') for line in f]
|
|
|
|
self.text_cleaners = hparams.text_cleaners
|
|
|
|
self.max_wav_value = hparams.max_wav_value
|
|
|
|
self.sampling_rate = hparams.sampling_rate
|
|
|
|
self.filter_length = hparams.filter_length
|
|
|
|
self.hop_length = hparams.hop_length
|
|
|
|
self.win_length = hparams.win_length
|
|
|
|
self.sampling_rate = hparams.sampling_rate
|
|
|
|
|
|
|
|
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
|
|
|
|
|
|
|
self.add_blank = hparams.add_blank
|
|
|
|
self.datasets_root = hparams.datasets_root
|
|
|
|
|
|
|
|
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
|
|
|
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
|
|
|
|
|
|
|
random.seed(1234)
|
|
|
|
random.shuffle(self.audio_metadata)
|
|
|
|
self._filter()
|
|
|
|
|
|
|
|
def _filter(self):
|
|
|
|
"""
|
|
|
|
Filter text & store spec lengths
|
|
|
|
"""
|
|
|
|
# Store spectrogram lengths for Bucketing
|
|
|
|
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
|
|
|
# spec_length = wav_length // hop_length
|
|
|
|
|
|
|
|
audio_metadata_new = []
|
|
|
|
lengths = []
|
|
|
|
|
|
|
|
# for audiopath, sid, text in self.audio_metadata:
|
2023-02-18 09:31:05 +08:00
|
|
|
for wav_fpath, mel_fpath, embed_path, wav_length, mel_frames, text, spkid in self.audio_metadata:
|
2023-02-04 14:13:38 +08:00
|
|
|
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
2023-02-18 09:31:05 +08:00
|
|
|
audio_metadata_new.append([wav_fpath, mel_fpath, embed_path, wav_length, mel_frames, text, spkid])
|
2023-02-04 14:13:38 +08:00
|
|
|
lengths.append(os.path.getsize(f'{self.datasets_root}{os.sep}audio{os.sep}{wav_fpath}') // (2 * self.hop_length))
|
|
|
|
self.audio_metadata = audio_metadata_new
|
|
|
|
self.lengths = lengths
|
|
|
|
|
|
|
|
def get_audio_text_speaker_pair(self, audio_metadata):
|
|
|
|
# separate filename, speaker_id and text
|
|
|
|
wav_fpath, text, sid = audio_metadata[0], audio_metadata[5], audio_metadata[6]
|
|
|
|
text = self.get_text(text)
|
2023-02-10 20:34:01 +08:00
|
|
|
|
2023-02-18 09:31:05 +08:00
|
|
|
spec, wav = self.get_audio(f'{self.datasets_root}{os.sep}audio{os.sep}{wav_fpath}')
|
2023-02-04 14:13:38 +08:00
|
|
|
sid = self.get_sid(sid)
|
|
|
|
emo = torch.FloatTensor(np.load(f'{self.datasets_root}{os.sep}emo{os.sep}{wav_fpath.replace("audio", "emo")}'))
|
|
|
|
return (text, spec, wav, sid, emo)
|
|
|
|
|
|
|
|
def get_audio(self, filename):
|
2023-02-18 09:31:05 +08:00
|
|
|
# Load preprocessed wav npy instead of reading from wav file
|
|
|
|
audio = torch.FloatTensor(np.load(filename))
|
|
|
|
audio_norm = audio.unsqueeze(0)
|
|
|
|
|
|
|
|
spec_filename = filename.replace(".wav", ".spec")
|
|
|
|
if os.path.exists(spec_filename):
|
|
|
|
spec = torch.load(spec_filename)
|
|
|
|
else:
|
|
|
|
spec = spectrogram(audio_norm, self.filter_length,self.hop_length, self.win_length,
|
|
|
|
center=False)
|
|
|
|
torch.save(spec, spec_filename)
|
2023-02-10 20:34:01 +08:00
|
|
|
spec = torch.squeeze(spec, 0)
|
|
|
|
return spec, audio_norm
|
|
|
|
|
2023-02-04 14:13:38 +08:00
|
|
|
def get_text(self, text):
|
|
|
|
if self.cleaned_text:
|
|
|
|
text_norm = text_to_sequence(text, self.text_cleaners)
|
|
|
|
if self.add_blank:
|
2023-02-18 09:31:05 +08:00
|
|
|
text_norm = intersperse(text_norm, 0) # 在所有文本数值序列中的元素前后都补充一个0 - 不适用于中文
|
2023-02-04 14:13:38 +08:00
|
|
|
text_norm = torch.LongTensor(text_norm)
|
|
|
|
return text_norm
|
|
|
|
|
|
|
|
def get_sid(self, sid):
|
|
|
|
sid = torch.LongTensor([int(sid)])
|
|
|
|
return sid
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
return self.get_audio_text_speaker_pair(self.audio_metadata[index])
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.audio_metadata)
|
|
|
|
|
|
|
|
|
|
|
|
class VitsDatasetCollate():
|
|
|
|
""" Zero-pads model inputs and targets
|
|
|
|
"""
|
|
|
|
def __init__(self, return_ids=False):
|
|
|
|
self.return_ids = return_ids
|
|
|
|
|
|
|
|
def __call__(self, batch):
|
|
|
|
"""Collate's training batch from normalized text, audio and speaker identities
|
|
|
|
PARAMS
|
|
|
|
------
|
|
|
|
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
|
|
|
"""
|
|
|
|
# Right zero-pad all one-hot text sequences to max input length
|
|
|
|
_, ids_sorted_decreasing = torch.sort(
|
|
|
|
torch.LongTensor([x[1].size(1) for x in batch]),
|
|
|
|
dim=0, descending=True)
|
|
|
|
|
|
|
|
max_text_len = max([len(x[0]) for x in batch])
|
|
|
|
max_spec_len = max([x[1].size(1) for x in batch])
|
|
|
|
max_wav_len = max([x[2].size(1) for x in batch])
|
|
|
|
|
|
|
|
text_lengths = torch.LongTensor(len(batch))
|
|
|
|
spec_lengths = torch.LongTensor(len(batch))
|
|
|
|
wav_lengths = torch.LongTensor(len(batch))
|
|
|
|
sid = torch.LongTensor(len(batch))
|
|
|
|
|
|
|
|
text_padded = torch.LongTensor(len(batch), max_text_len)
|
|
|
|
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
|
|
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
|
|
|
emo = torch.FloatTensor(len(batch), 1024)
|
|
|
|
|
|
|
|
text_padded.zero_()
|
|
|
|
spec_padded.zero_()
|
|
|
|
wav_padded.zero_()
|
|
|
|
emo.zero_()
|
|
|
|
|
|
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
|
|
row = batch[ids_sorted_decreasing[i]]
|
|
|
|
|
|
|
|
text = row[0]
|
|
|
|
text_padded[i, :text.size(0)] = text
|
|
|
|
text_lengths[i] = text.size(0)
|
|
|
|
|
|
|
|
spec = row[1]
|
|
|
|
spec_padded[i, :, :spec.size(1)] = spec
|
|
|
|
spec_lengths[i] = spec.size(1)
|
|
|
|
|
|
|
|
wav = row[2]
|
|
|
|
wav_padded[i, :, :wav.size(1)] = wav
|
|
|
|
wav_lengths[i] = wav.size(1)
|
|
|
|
|
|
|
|
sid[i] = row[3]
|
|
|
|
|
|
|
|
emo[i, :] = row[4]
|
|
|
|
|
|
|
|
if self.return_ids:
|
2023-02-18 09:31:05 +08:00
|
|
|
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing, emo
|
2023-02-04 14:13:38 +08:00
|
|
|
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, emo
|
|
|
|
|
|
|
|
|
|
|
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
|
|
|
"""
|
|
|
|
Maintain similar input lengths in a batch.
|
|
|
|
Length groups are specified by boundaries.
|
|
|
|
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
|
|
|
|
|
|
|
It removes samples which are not included in the boundaries.
|
|
|
|
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
|
|
|
"""
|
|
|
|
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
|
|
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
|
|
|
self.lengths = dataset.lengths
|
|
|
|
self.batch_size = batch_size
|
|
|
|
self.boundaries = boundaries
|
|
|
|
|
|
|
|
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
|
|
|
self.total_size = sum(self.num_samples_per_bucket)
|
|
|
|
self.num_samples = self.total_size // self.num_replicas
|
|
|
|
|
|
|
|
def _create_buckets(self):
|
|
|
|
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
|
|
|
for i in range(len(self.lengths)):
|
|
|
|
length = self.lengths[i]
|
|
|
|
idx_bucket = self._bisect(length)
|
|
|
|
if idx_bucket != -1:
|
|
|
|
buckets[idx_bucket].append(i)
|
|
|
|
|
|
|
|
for i in range(len(buckets) - 1, 0, -1):
|
|
|
|
if len(buckets[i]) == 0:
|
|
|
|
buckets.pop(i)
|
|
|
|
self.boundaries.pop(i+1)
|
|
|
|
|
|
|
|
num_samples_per_bucket = []
|
|
|
|
for i in range(len(buckets)):
|
|
|
|
len_bucket = len(buckets[i])
|
|
|
|
total_batch_size = self.num_replicas * self.batch_size
|
|
|
|
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
|
|
|
num_samples_per_bucket.append(len_bucket + rem)
|
|
|
|
return buckets, num_samples_per_bucket
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
# deterministically shuffle based on epoch
|
|
|
|
g = torch.Generator()
|
|
|
|
g.manual_seed(self.epoch)
|
|
|
|
|
|
|
|
indices = []
|
|
|
|
if self.shuffle:
|
|
|
|
for bucket in self.buckets:
|
|
|
|
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
|
|
|
else:
|
|
|
|
for bucket in self.buckets:
|
|
|
|
indices.append(list(range(len(bucket))))
|
|
|
|
|
|
|
|
batches = []
|
|
|
|
for i in range(len(self.buckets)):
|
|
|
|
bucket = self.buckets[i]
|
|
|
|
len_bucket = len(bucket)
|
|
|
|
ids_bucket = indices[i]
|
|
|
|
num_samples_bucket = self.num_samples_per_bucket[i]
|
|
|
|
|
|
|
|
# add extra samples to make it evenly divisible
|
|
|
|
rem = num_samples_bucket - len_bucket
|
|
|
|
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
|
|
|
|
|
|
|
# subsample
|
|
|
|
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
|
|
|
|
|
|
|
# batching
|
|
|
|
for j in range(len(ids_bucket) // self.batch_size):
|
|
|
|
batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
|
|
|
|
batches.append(batch)
|
|
|
|
|
|
|
|
if self.shuffle:
|
|
|
|
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
|
|
|
batches = [batches[i] for i in batch_ids]
|
|
|
|
self.batches = batches
|
|
|
|
|
|
|
|
assert len(self.batches) * self.batch_size == self.num_samples
|
|
|
|
return iter(self.batches)
|
|
|
|
|
|
|
|
def _bisect(self, x, lo=0, hi=None):
|
|
|
|
if hi is None:
|
|
|
|
hi = len(self.boundaries) - 1
|
|
|
|
|
|
|
|
if hi > lo:
|
|
|
|
mid = (hi + lo) // 2
|
|
|
|
if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
|
|
|
|
return mid
|
|
|
|
elif x <= self.boundaries[mid]:
|
|
|
|
return self._bisect(x, lo, mid)
|
|
|
|
else:
|
|
|
|
return self._bisect(x, mid + 1, hi)
|
|
|
|
else:
|
|
|
|
return -1
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.num_samples // self.batch_size
|