2021-08-07 11:56:00 +08:00
|
|
|
import torch
|
|
|
|
from torch.utils.data import Dataset
|
|
|
|
import numpy as np
|
|
|
|
from pathlib import Path
|
2022-12-03 16:54:06 +08:00
|
|
|
from models.synthesizer.utils.text import text_to_sequence
|
2021-08-07 11:56:00 +08:00
|
|
|
|
|
|
|
|
|
|
|
class SynthesizerDataset(Dataset):
|
|
|
|
def __init__(self, metadata_fpath: Path, mel_dir: Path, embed_dir: Path, hparams):
|
|
|
|
print("Using inputs from:\n\t%s\n\t%s\n\t%s" % (metadata_fpath, mel_dir, embed_dir))
|
|
|
|
|
|
|
|
with metadata_fpath.open("r", encoding="utf-8") as metadata_file:
|
|
|
|
metadata = [line.split("|") for line in metadata_file]
|
|
|
|
|
|
|
|
mel_fnames = [x[1] for x in metadata if int(x[4])]
|
|
|
|
mel_fpaths = [mel_dir.joinpath(fname) for fname in mel_fnames]
|
|
|
|
embed_fnames = [x[2] for x in metadata if int(x[4])]
|
|
|
|
embed_fpaths = [embed_dir.joinpath(fname) for fname in embed_fnames]
|
|
|
|
self.samples_fpaths = list(zip(mel_fpaths, embed_fpaths))
|
|
|
|
self.samples_texts = [x[5].strip() for x in metadata if int(x[4])]
|
|
|
|
self.metadata = metadata
|
|
|
|
self.hparams = hparams
|
|
|
|
|
|
|
|
print("Found %d samples" % len(self.samples_fpaths))
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
# Sometimes index may be a list of 2 (not sure why this happens)
|
|
|
|
# If that is the case, return a single item corresponding to first element in index
|
|
|
|
if index is list:
|
|
|
|
index = index[0]
|
|
|
|
|
|
|
|
mel_path, embed_path = self.samples_fpaths[index]
|
|
|
|
mel = np.load(mel_path).T.astype(np.float32)
|
|
|
|
|
|
|
|
# Load the embed
|
|
|
|
embed = np.load(embed_path)
|
|
|
|
|
|
|
|
# Get the text and clean it
|
|
|
|
text = text_to_sequence(self.samples_texts[index], self.hparams.tts_cleaner_names)
|
|
|
|
|
|
|
|
# Convert the list returned by text_to_sequence to a numpy array
|
|
|
|
text = np.asarray(text).astype(np.int32)
|
|
|
|
|
|
|
|
return text, mel.astype(np.float32), embed.astype(np.float32), index
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.samples_fpaths)
|
|
|
|
|
|
|
|
|
|
|
|
def collate_synthesizer(batch):
|
|
|
|
# Text
|
|
|
|
x_lens = [len(x[0]) for x in batch]
|
|
|
|
max_x_len = max(x_lens)
|
|
|
|
|
|
|
|
chars = [pad1d(x[0], max_x_len) for x in batch]
|
|
|
|
chars = np.stack(chars)
|
|
|
|
|
|
|
|
# Mel spectrogram
|
|
|
|
spec_lens = [x[1].shape[-1] for x in batch]
|
|
|
|
max_spec_len = max(spec_lens) + 1
|
|
|
|
if max_spec_len % 2 != 0: # FIXIT: Hardcoded due to incompatibility with Windows (no lambda)
|
|
|
|
max_spec_len += 2 - max_spec_len % 2
|
|
|
|
|
|
|
|
# WaveRNN mel spectrograms are normalized to [0, 1] so zero padding adds silence
|
|
|
|
# By default, SV2TTS uses symmetric mels, where -1*max_abs_value is silence.
|
|
|
|
# if hparams.symmetric_mels:
|
|
|
|
# mel_pad_value = -1 * hparams.max_abs_value
|
|
|
|
# else:
|
|
|
|
# mel_pad_value = 0
|
|
|
|
mel_pad_value = -4 # FIXIT: Hardcoded due to incompatibility with Windows (no lambda)
|
|
|
|
mel = [pad2d(x[1], max_spec_len, pad_value=mel_pad_value) for x in batch]
|
|
|
|
mel = np.stack(mel)
|
|
|
|
|
|
|
|
# Speaker embedding (SV2TTS)
|
|
|
|
embeds = [x[2] for x in batch]
|
2021-12-20 20:33:12 +08:00
|
|
|
embeds = np.stack(embeds)
|
2021-08-07 11:56:00 +08:00
|
|
|
|
|
|
|
# Index (for vocoder preprocessing)
|
|
|
|
indices = [x[3] for x in batch]
|
|
|
|
|
|
|
|
|
|
|
|
# Convert all to tensor
|
|
|
|
chars = torch.tensor(chars).long()
|
|
|
|
mel = torch.tensor(mel)
|
|
|
|
embeds = torch.tensor(embeds)
|
|
|
|
|
|
|
|
return chars, mel, embeds, indices
|
|
|
|
|
|
|
|
def pad1d(x, max_len, pad_value=0):
|
|
|
|
return np.pad(x, (0, max_len - len(x)), mode="constant", constant_values=pad_value)
|
|
|
|
|
|
|
|
def pad2d(x, max_len, pad_value=0):
|
|
|
|
return np.pad(x, ((0, 0), (0, max_len - x.shape[-1])), mode="constant", constant_values=pad_value)
|