2021-08-07 11:56:00 +08:00
|
|
|
from synthesizer.preprocess import create_embeddings
|
|
|
|
from utils.argutils import print_args
|
|
|
|
from pathlib import Path
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2021-09-11 22:59:09 +08:00
|
|
|
print("This method is deprecaded and will not be longer supported, please use 'pre.py'")
|
2021-08-07 11:56:00 +08:00
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
description="Creates embeddings for the synthesizer from the LibriSpeech utterances.",
|
|
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
|
|
)
|
|
|
|
parser.add_argument("synthesizer_root", type=Path, help=\
|
|
|
|
"Path to the synthesizer training data that contains the audios and the train.txt file. "
|
|
|
|
"If you let everything as default, it should be <datasets_root>/SV2TTS/synthesizer/.")
|
|
|
|
parser.add_argument("-e", "--encoder_model_fpath", type=Path,
|
|
|
|
default="encoder/saved_models/pretrained.pt", help=\
|
|
|
|
"Path your trained encoder model.")
|
|
|
|
parser.add_argument("-n", "--n_processes", type=int, default=4, help= \
|
|
|
|
"Number of parallel processes. An encoder is created for each, so you may need to lower "
|
|
|
|
"this value on GPUs with low memory. Set it to 1 if CUDA is unhappy.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
# Preprocess the dataset
|
|
|
|
print_args(args, parser)
|
|
|
|
create_embeddings(**vars(args))
|