MockingBird/synthesizer/preprocess.py

121 lines
5.3 KiB
Python
Raw Normal View History

2021-08-07 11:56:00 +08:00
from multiprocessing.pool import Pool
2021-08-07 11:56:00 +08:00
from functools import partial
from itertools import chain
from pathlib import Path
from tqdm import tqdm
import numpy as np
from encoder import inference as encoder
from synthesizer.preprocess_speaker import preprocess_speaker_general
2021-10-12 20:01:37 +08:00
from synthesizer.preprocess_transcript import preprocess_transcript_aishell3, preprocess_transcript_magicdata
2021-08-07 11:56:00 +08:00
data_info = {
"aidatatang_200zh": {
"subfolders": ["corpus/train"],
"trans_filepath": "transcript/aidatatang_200_zh_transcript.txt",
"speak_func": preprocess_speaker_general
},
"magicdata": {
"subfolders": ["train"],
"trans_filepath": "train/TRANS.txt",
2021-10-12 20:01:37 +08:00
"speak_func": preprocess_speaker_general,
"transcript_func": preprocess_transcript_magicdata,
2021-08-25 23:11:29 +08:00
},
"aishell3":{
"subfolders": ["train/wav"],
"trans_filepath": "train/content.txt",
"speak_func": preprocess_speaker_general,
"transcript_func": preprocess_transcript_aishell3,
},
"data_aishell":{
"subfolders": ["wav/train"],
"trans_filepath": "transcript/aishell_transcript_v0.8.txt",
"speak_func": preprocess_speaker_general
}
}
2021-08-07 11:56:00 +08:00
def preprocess_dataset(datasets_root: Path, out_dir: Path, n_processes: int,
skip_existing: bool, hparams, no_alignments: bool,
dataset: str):
dataset_info = data_info[dataset]
2021-08-07 11:56:00 +08:00
# Gather the input directories
dataset_root = datasets_root.joinpath(dataset)
input_dirs = [dataset_root.joinpath(subfolder.strip()) for subfolder in dataset_info["subfolders"]]
2021-08-07 11:56:00 +08:00
print("\n ".join(map(str, ["Using data from:"] + input_dirs)))
assert all(input_dir.exists() for input_dir in input_dirs)
# Create the output directories for each output file type
out_dir.joinpath("mels").mkdir(exist_ok=True)
out_dir.joinpath("audio").mkdir(exist_ok=True)
# Create a metadata file
metadata_fpath = out_dir.joinpath("train.txt")
metadata_file = metadata_fpath.open("a" if skip_existing else "w", encoding="utf-8")
# Preprocess the dataset
dict_info = {}
transcript_dirs = dataset_root.joinpath(dataset_info["trans_filepath"])
assert transcript_dirs.exists(), str(transcript_dirs)+" not exist."
with open(transcript_dirs, "r", encoding="utf-8") as dict_transcript:
# process with specific function for your dataset
if "transcript_func" in dataset_info:
dataset_info["transcript_func"](dict_info, dict_transcript)
else:
for v in dict_transcript:
if not v:
continue
v = v.strip().replace("\n","").replace("\t"," ").split(" ")
dict_info[v[0]] = " ".join(v[1:])
2021-08-07 11:56:00 +08:00
speaker_dirs = list(chain.from_iterable(input_dir.glob("*") for input_dir in input_dirs))
func = partial(dataset_info["speak_func"], out_dir=out_dir, skip_existing=skip_existing,
hparams=hparams, dict_info=dict_info, no_alignments=no_alignments)
2021-08-07 11:56:00 +08:00
job = Pool(n_processes).imap(func, speaker_dirs)
for speaker_metadata in tqdm(job, dataset, len(speaker_dirs), unit="speakers"):
2021-08-07 11:56:00 +08:00
for metadatum in speaker_metadata:
metadata_file.write("|".join(str(x) for x in metadatum) + "\n")
metadata_file.close()
# Verify the contents of the metadata file
with metadata_fpath.open("r", encoding="utf-8") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
mel_frames = sum([int(m[4]) for m in metadata])
timesteps = sum([int(m[3]) for m in metadata])
sample_rate = hparams.sample_rate
hours = (timesteps / sample_rate) / 3600
print("The dataset consists of %d utterances, %d mel frames, %d audio timesteps (%.2f hours)." %
(len(metadata), mel_frames, timesteps, hours))
print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata))
print("Max mel frames length: %d" % max(int(m[4]) for m in metadata))
print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata))
def embed_utterance(fpaths, encoder_model_fpath):
if not encoder.is_loaded():
encoder.load_model(encoder_model_fpath)
# Compute the speaker embedding of the utterance
wav_fpath, embed_fpath = fpaths
wav = np.load(wav_fpath)
wav = encoder.preprocess_wav(wav)
embed = encoder.embed_utterance(wav)
np.save(embed_fpath, embed, allow_pickle=False)
def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_processes: int):
wav_dir = synthesizer_root.joinpath("audio")
metadata_fpath = synthesizer_root.joinpath("train.txt")
assert wav_dir.exists() and metadata_fpath.exists()
embed_dir = synthesizer_root.joinpath("embeds")
embed_dir.mkdir(exist_ok=True)
# Gather the input wave filepath and the target output embed filepath
with metadata_fpath.open("r", encoding="utf-8") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
fpaths = [(wav_dir.joinpath(m[0]), embed_dir.joinpath(m[2])) for m in metadata]
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
# Embed the utterances in separate threads
func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath)
job = Pool(n_processes).imap(func, fpaths)
list(tqdm(job, "Embedding", len(fpaths), unit="utterances"))