mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
226 lines
11 KiB
Python
226 lines
11 KiB
Python
|
from encoder.params_model import model_embedding_size as speaker_embedding_size
|
||
|
from utils.argutils import print_args
|
||
|
from utils.modelutils import check_model_paths
|
||
|
from synthesizer.inference import Synthesizer
|
||
|
from encoder import inference as encoder
|
||
|
from vocoder import inference as vocoder
|
||
|
from pathlib import Path
|
||
|
import numpy as np
|
||
|
import soundfile as sf
|
||
|
import librosa
|
||
|
import argparse
|
||
|
import torch
|
||
|
import sys
|
||
|
import os
|
||
|
from audioread.exceptions import NoBackendError
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
## Info & args
|
||
|
parser = argparse.ArgumentParser(
|
||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||
|
)
|
||
|
parser.add_argument("-e", "--enc_model_fpath", type=Path,
|
||
|
default="encoder/saved_models/pretrained.pt",
|
||
|
help="Path to a saved encoder")
|
||
|
parser.add_argument("-s", "--syn_model_fpath", type=Path,
|
||
|
default="synthesizer/saved_models/pretrained/pretrained.pt",
|
||
|
help="Path to a saved synthesizer")
|
||
|
parser.add_argument("-v", "--voc_model_fpath", type=Path,
|
||
|
default="vocoder/saved_models/pretrained/pretrained.pt",
|
||
|
help="Path to a saved vocoder")
|
||
|
parser.add_argument("--cpu", action="store_true", help=\
|
||
|
"If True, processing is done on CPU, even when a GPU is available.")
|
||
|
parser.add_argument("--no_sound", action="store_true", help=\
|
||
|
"If True, audio won't be played.")
|
||
|
parser.add_argument("--seed", type=int, default=None, help=\
|
||
|
"Optional random number seed value to make toolbox deterministic.")
|
||
|
parser.add_argument("--no_mp3_support", action="store_true", help=\
|
||
|
"If True, disallows loading mp3 files to prevent audioread errors when ffmpeg is not installed.")
|
||
|
args = parser.parse_args()
|
||
|
print_args(args, parser)
|
||
|
if not args.no_sound:
|
||
|
import sounddevice as sd
|
||
|
|
||
|
if args.cpu:
|
||
|
# Hide GPUs from Pytorch to force CPU processing
|
||
|
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
||
|
|
||
|
if not args.no_mp3_support:
|
||
|
try:
|
||
|
librosa.load("samples/1320_00000.mp3")
|
||
|
except NoBackendError:
|
||
|
print("Librosa will be unable to open mp3 files if additional software is not installed.\n"
|
||
|
"Please install ffmpeg or add the '--no_mp3_support' option to proceed without support for mp3 files.")
|
||
|
exit(-1)
|
||
|
|
||
|
print("Running a test of your configuration...\n")
|
||
|
|
||
|
if torch.cuda.is_available():
|
||
|
device_id = torch.cuda.current_device()
|
||
|
gpu_properties = torch.cuda.get_device_properties(device_id)
|
||
|
## Print some environment information (for debugging purposes)
|
||
|
print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with "
|
||
|
"%.1fGb total memory.\n" %
|
||
|
(torch.cuda.device_count(),
|
||
|
device_id,
|
||
|
gpu_properties.name,
|
||
|
gpu_properties.major,
|
||
|
gpu_properties.minor,
|
||
|
gpu_properties.total_memory / 1e9))
|
||
|
else:
|
||
|
print("Using CPU for inference.\n")
|
||
|
|
||
|
## Remind the user to download pretrained models if needed
|
||
|
check_model_paths(encoder_path=args.enc_model_fpath,
|
||
|
synthesizer_path=args.syn_model_fpath,
|
||
|
vocoder_path=args.voc_model_fpath)
|
||
|
|
||
|
## Load the models one by one.
|
||
|
print("Preparing the encoder, the synthesizer and the vocoder...")
|
||
|
encoder.load_model(args.enc_model_fpath)
|
||
|
synthesizer = Synthesizer(args.syn_model_fpath)
|
||
|
vocoder.load_model(args.voc_model_fpath)
|
||
|
|
||
|
|
||
|
## Run a test
|
||
|
print("Testing your configuration with small inputs.")
|
||
|
# Forward an audio waveform of zeroes that lasts 1 second. Notice how we can get the encoder's
|
||
|
# sampling rate, which may differ.
|
||
|
# If you're unfamiliar with digital audio, know that it is encoded as an array of floats
|
||
|
# (or sometimes integers, but mostly floats in this projects) ranging from -1 to 1.
|
||
|
# The sampling rate is the number of values (samples) recorded per second, it is set to
|
||
|
# 16000 for the encoder. Creating an array of length <sampling_rate> will always correspond
|
||
|
# to an audio of 1 second.
|
||
|
print("\tTesting the encoder...")
|
||
|
encoder.embed_utterance(np.zeros(encoder.sampling_rate))
|
||
|
|
||
|
# Create a dummy embedding. You would normally use the embedding that encoder.embed_utterance
|
||
|
# returns, but here we're going to make one ourselves just for the sake of showing that it's
|
||
|
# possible.
|
||
|
embed = np.random.rand(speaker_embedding_size)
|
||
|
# Embeddings are L2-normalized (this isn't important here, but if you want to make your own
|
||
|
# embeddings it will be).
|
||
|
embed /= np.linalg.norm(embed)
|
||
|
# The synthesizer can handle multiple inputs with batching. Let's create another embedding to
|
||
|
# illustrate that
|
||
|
embeds = [embed, np.zeros(speaker_embedding_size)]
|
||
|
texts = ["test 1", "test 2"]
|
||
|
print("\tTesting the synthesizer... (loading the model will output a lot of text)")
|
||
|
mels = synthesizer.synthesize_spectrograms(texts, embeds)
|
||
|
|
||
|
# The vocoder synthesizes one waveform at a time, but it's more efficient for long ones. We
|
||
|
# can concatenate the mel spectrograms to a single one.
|
||
|
mel = np.concatenate(mels, axis=1)
|
||
|
# The vocoder can take a callback function to display the generation. More on that later. For
|
||
|
# now we'll simply hide it like this:
|
||
|
no_action = lambda *args: None
|
||
|
print("\tTesting the vocoder...")
|
||
|
# For the sake of making this test short, we'll pass a short target length. The target length
|
||
|
# is the length of the wav segments that are processed in parallel. E.g. for audio sampled
|
||
|
# at 16000 Hertz, a target length of 8000 means that the target audio will be cut in chunks of
|
||
|
# 0.5 seconds which will all be generated together. The parameters here are absurdly short, and
|
||
|
# that has a detrimental effect on the quality of the audio. The default parameters are
|
||
|
# recommended in general.
|
||
|
vocoder.infer_waveform(mel, target=200, overlap=50, progress_callback=no_action)
|
||
|
|
||
|
print("All test passed! You can now synthesize speech.\n\n")
|
||
|
|
||
|
|
||
|
## Interactive speech generation
|
||
|
print("This is a GUI-less example of interface to SV2TTS. The purpose of this script is to "
|
||
|
"show how you can interface this project easily with your own. See the source code for "
|
||
|
"an explanation of what is happening.\n")
|
||
|
|
||
|
print("Interactive generation loop")
|
||
|
num_generated = 0
|
||
|
while True:
|
||
|
try:
|
||
|
# Get the reference audio filepath
|
||
|
message = "Reference voice: enter an audio filepath of a voice to be cloned (mp3, " \
|
||
|
"wav, m4a, flac, ...):\n"
|
||
|
in_fpath = Path(input(message).replace("\"", "").replace("\'", ""))
|
||
|
|
||
|
if in_fpath.suffix.lower() == ".mp3" and args.no_mp3_support:
|
||
|
print("Can't Use mp3 files please try again:")
|
||
|
continue
|
||
|
## Computing the embedding
|
||
|
# First, we load the wav using the function that the speaker encoder provides. This is
|
||
|
# important: there is preprocessing that must be applied.
|
||
|
|
||
|
# The following two methods are equivalent:
|
||
|
# - Directly load from the filepath:
|
||
|
preprocessed_wav = encoder.preprocess_wav(in_fpath)
|
||
|
# - If the wav is already loaded:
|
||
|
original_wav, sampling_rate = librosa.load(str(in_fpath))
|
||
|
preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate)
|
||
|
print("Loaded file succesfully")
|
||
|
|
||
|
# Then we derive the embedding. There are many functions and parameters that the
|
||
|
# speaker encoder interfaces. These are mostly for in-depth research. You will typically
|
||
|
# only use this function (with its default parameters):
|
||
|
embed = encoder.embed_utterance(preprocessed_wav)
|
||
|
print("Created the embedding")
|
||
|
|
||
|
|
||
|
## Generating the spectrogram
|
||
|
text = input("Write a sentence (+-20 words) to be synthesized:\n")
|
||
|
|
||
|
# If seed is specified, reset torch seed and force synthesizer reload
|
||
|
if args.seed is not None:
|
||
|
torch.manual_seed(args.seed)
|
||
|
synthesizer = Synthesizer(args.syn_model_fpath)
|
||
|
|
||
|
# The synthesizer works in batch, so you need to put your data in a list or numpy array
|
||
|
texts = [text]
|
||
|
embeds = [embed]
|
||
|
# If you know what the attention layer alignments are, you can retrieve them here by
|
||
|
# passing return_alignments=True
|
||
|
specs = synthesizer.synthesize_spectrograms(texts, embeds)
|
||
|
spec = specs[0]
|
||
|
print("Created the mel spectrogram")
|
||
|
|
||
|
|
||
|
## Generating the waveform
|
||
|
print("Synthesizing the waveform:")
|
||
|
|
||
|
# If seed is specified, reset torch seed and reload vocoder
|
||
|
if args.seed is not None:
|
||
|
torch.manual_seed(args.seed)
|
||
|
vocoder.load_model(args.voc_model_fpath)
|
||
|
|
||
|
# Synthesizing the waveform is fairly straightforward. Remember that the longer the
|
||
|
# spectrogram, the more time-efficient the vocoder.
|
||
|
generated_wav = vocoder.infer_waveform(spec)
|
||
|
|
||
|
|
||
|
## Post-generation
|
||
|
# There's a bug with sounddevice that makes the audio cut one second earlier, so we
|
||
|
# pad it.
|
||
|
generated_wav = np.pad(generated_wav, (0, synthesizer.sample_rate), mode="constant")
|
||
|
|
||
|
# Trim excess silences to compensate for gaps in spectrograms (issue #53)
|
||
|
generated_wav = encoder.preprocess_wav(generated_wav)
|
||
|
|
||
|
# Play the audio (non-blocking)
|
||
|
if not args.no_sound:
|
||
|
try:
|
||
|
sd.stop()
|
||
|
sd.play(generated_wav, synthesizer.sample_rate)
|
||
|
except sd.PortAudioError as e:
|
||
|
print("\nCaught exception: %s" % repr(e))
|
||
|
print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n")
|
||
|
except:
|
||
|
raise
|
||
|
|
||
|
# Save it on the disk
|
||
|
filename = "demo_output_%02d.wav" % num_generated
|
||
|
print(generated_wav.dtype)
|
||
|
sf.write(filename, generated_wav.astype(np.float32), synthesizer.sample_rate)
|
||
|
num_generated += 1
|
||
|
print("\nSaved output as %s\n\n" % filename)
|
||
|
|
||
|
|
||
|
except Exception as e:
|
||
|
print("Caught exception: %s" % repr(e))
|
||
|
print("Restarting\n")
|