MockingBird/models/ppg_extractor/encoder/encoder_layer.py

153 lines
5.2 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2020 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Encoder self-attention layer definition."""
import torch
from torch import nn
from .layer_norm import LayerNorm
class EncoderLayer(nn.Module):
"""Encoder layer module.
:param int size: input dim
:param espnet.nets.pytorch_backend.transformer.attention.
MultiHeadedAttention self_attn: self attention module
RelPositionMultiHeadedAttention self_attn: self attention module
:param espnet.nets.pytorch_backend.transformer.positionwise_feed_forward.
PositionwiseFeedForward feed_forward:
feed forward module
:param espnet.nets.pytorch_backend.transformer.positionwise_feed_forward
for macaron style
PositionwiseFeedForward feed_forward:
feed forward module
:param espnet.nets.pytorch_backend.conformer.convolution.
ConvolutionModule feed_foreard:
feed forward module
:param float dropout_rate: dropout rate
:param bool normalize_before: whether to use layer_norm before the first block
:param bool concat_after: whether to concat attention layer's input and output
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
"""
def __init__(
self,
size,
self_attn,
feed_forward,
feed_forward_macaron,
conv_module,
dropout_rate,
normalize_before=True,
concat_after=False,
):
"""Construct an EncoderLayer object."""
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm_ff = LayerNorm(size) # for the FNN module
self.norm_mha = LayerNorm(size) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = LayerNorm(size)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = LayerNorm(size) # for the CNN module
self.norm_final = LayerNorm(size) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear = nn.Linear(size + size, size)
def forward(self, x_input, mask, cache=None):
"""Compute encoded features.
:param torch.Tensor x_input: encoded source features, w/o pos_emb
tuple((batch, max_time_in, size), (1, max_time_in, size))
or (batch, max_time_in, size)
:param torch.Tensor mask: mask for x (batch, max_time_in)
:param torch.Tensor cache: cache for x (batch, max_time_in - 1, size)
:rtype: Tuple[torch.Tensor, torch.Tensor]
"""
if isinstance(x_input, tuple):
x, pos_emb = x_input[0], x_input[1]
else:
x, pos_emb = x_input, None
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
if not self.normalize_before:
x = self.norm_ff_macaron(x)
# multi-headed self-attention module
residual = x
if self.normalize_before:
x = self.norm_mha(x)
if cache is None:
x_q = x
else:
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
x_q = x[:, -1:, :]
residual = residual[:, -1:, :]
mask = None if mask is None else mask[:, -1:, :]
if pos_emb is not None:
x_att = self.self_attn(x_q, x, x, pos_emb, mask)
else:
x_att = self.self_attn(x_q, x, x, mask)
if self.concat_after:
x_concat = torch.cat((x, x_att), dim=-1)
x = residual + self.concat_linear(x_concat)
else:
x = residual + self.dropout(x_att)
if not self.normalize_before:
x = self.norm_mha(x)
# convolution module
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x = residual + self.dropout(self.conv_module(x))
if not self.normalize_before:
x = self.norm_conv(x)
# feed forward module
residual = x
if self.normalize_before:
x = self.norm_ff(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm_ff(x)
if self.conv_module is not None:
x = self.norm_final(x)
if cache is not None:
x = torch.cat([cache, x], dim=1)
if pos_emb is not None:
return (x, pos_emb), mask
return x, mask