2021-09-07 21:41:16 +08:00
|
|
|
import math
|
|
|
|
import os
|
|
|
|
import random
|
|
|
|
import torch
|
|
|
|
import torch.utils.data
|
|
|
|
import numpy as np
|
|
|
|
from librosa.util import normalize
|
|
|
|
from scipy.io.wavfile import read
|
|
|
|
from librosa.filters import mel as librosa_mel_fn
|
|
|
|
|
|
|
|
MAX_WAV_VALUE = 32768.0
|
|
|
|
|
|
|
|
|
|
|
|
def load_wav(full_path):
|
|
|
|
sampling_rate, data = read(full_path)
|
|
|
|
return data, sampling_rate
|
|
|
|
|
|
|
|
|
|
|
|
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
|
|
|
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
|
|
|
|
|
|
|
|
|
|
|
def dynamic_range_decompression(x, C=1):
|
|
|
|
return np.exp(x) / C
|
|
|
|
|
|
|
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
|
|
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
|
|
|
|
|
|
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1):
|
|
|
|
return torch.exp(x) / C
|
|
|
|
|
|
|
|
|
|
|
|
def spectral_normalize_torch(magnitudes):
|
|
|
|
output = dynamic_range_compression_torch(magnitudes)
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes):
|
|
|
|
output = dynamic_range_decompression_torch(magnitudes)
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
mel_basis = {}
|
|
|
|
hann_window = {}
|
|
|
|
|
|
|
|
|
|
|
|
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
|
|
|
if torch.min(y) < -1.:
|
|
|
|
print('min value is ', torch.min(y))
|
|
|
|
if torch.max(y) > 1.:
|
|
|
|
print('max value is ', torch.max(y))
|
|
|
|
|
|
|
|
global mel_basis, hann_window
|
|
|
|
if fmax not in mel_basis:
|
|
|
|
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
|
|
|
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
|
|
|
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
|
|
|
|
|
|
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
|
|
|
y = y.squeeze(1)
|
|
|
|
|
|
|
|
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
|
|
|
|
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
|
|
|
|
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
|
|
|
|
|
|
|
|
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
|
|
|
|
spec = spectral_normalize_torch(spec)
|
|
|
|
|
|
|
|
return spec
|
|
|
|
|
|
|
|
|
|
|
|
def get_dataset_filelist(a):
|
|
|
|
# with open(a.input_training_file, 'r', encoding='utf-8') as fi:
|
|
|
|
# training_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
|
|
|
|
# for x in fi.read().split('\n') if len(x) > 0]
|
|
|
|
|
|
|
|
# with open(a.input_validation_file, 'r', encoding='utf-8') as fi:
|
|
|
|
# validation_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
|
|
|
|
# for x in fi.read().split('\n') if len(x) > 0]
|
|
|
|
|
|
|
|
files = os.listdir(a.input_wavs_dir)
|
|
|
|
random.shuffle(files)
|
|
|
|
files = [os.path.join(a.input_wavs_dir, f) for f in files]
|
2021-09-14 13:31:53 +08:00
|
|
|
training_files = files[: -int(len(files)*0.05)]
|
|
|
|
validation_files = files[-int(len(files)*0.05): ]
|
2021-09-07 21:41:16 +08:00
|
|
|
|
|
|
|
return training_files, validation_files
|
|
|
|
|
|
|
|
|
|
|
|
class MelDataset(torch.utils.data.Dataset):
|
|
|
|
def __init__(self, training_files, segment_size, n_fft, num_mels,
|
|
|
|
hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1,
|
|
|
|
device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None):
|
|
|
|
self.audio_files = training_files
|
|
|
|
random.seed(1234)
|
|
|
|
if shuffle:
|
|
|
|
random.shuffle(self.audio_files)
|
|
|
|
self.segment_size = segment_size
|
|
|
|
self.sampling_rate = sampling_rate
|
|
|
|
self.split = split
|
|
|
|
self.n_fft = n_fft
|
|
|
|
self.num_mels = num_mels
|
|
|
|
self.hop_size = hop_size
|
|
|
|
self.win_size = win_size
|
|
|
|
self.fmin = fmin
|
|
|
|
self.fmax = fmax
|
|
|
|
self.fmax_loss = fmax_loss
|
|
|
|
self.cached_wav = None
|
|
|
|
self.n_cache_reuse = n_cache_reuse
|
|
|
|
self._cache_ref_count = 0
|
|
|
|
self.device = device
|
|
|
|
self.fine_tuning = fine_tuning
|
|
|
|
self.base_mels_path = base_mels_path
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
filename = self.audio_files[index]
|
|
|
|
if self._cache_ref_count == 0:
|
|
|
|
# audio, sampling_rate = load_wav(filename)
|
|
|
|
# audio = audio / MAX_WAV_VALUE
|
|
|
|
audio = np.load(filename)
|
|
|
|
if not self.fine_tuning:
|
|
|
|
audio = normalize(audio) * 0.95
|
|
|
|
self.cached_wav = audio
|
|
|
|
# if sampling_rate != self.sampling_rate:
|
|
|
|
# raise ValueError("{} SR doesn't match target {} SR".format(
|
|
|
|
# sampling_rate, self.sampling_rate))
|
|
|
|
self._cache_ref_count = self.n_cache_reuse
|
|
|
|
else:
|
|
|
|
audio = self.cached_wav
|
|
|
|
self._cache_ref_count -= 1
|
|
|
|
|
|
|
|
audio = torch.FloatTensor(audio)
|
|
|
|
audio = audio.unsqueeze(0)
|
|
|
|
|
|
|
|
if not self.fine_tuning:
|
|
|
|
if self.split:
|
|
|
|
if audio.size(1) >= self.segment_size:
|
|
|
|
max_audio_start = audio.size(1) - self.segment_size
|
|
|
|
audio_start = random.randint(0, max_audio_start)
|
|
|
|
audio = audio[:, audio_start:audio_start+self.segment_size]
|
|
|
|
else:
|
|
|
|
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
|
|
|
|
|
|
|
|
mel = mel_spectrogram(audio, self.n_fft, self.num_mels,
|
|
|
|
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax,
|
|
|
|
center=False)
|
|
|
|
else:
|
|
|
|
mel_path = os.path.join(self.base_mels_path, "mel" + "-" + filename.split("/")[-1].split("-")[-1])
|
|
|
|
mel = np.load(mel_path).T
|
|
|
|
# mel = np.load(
|
|
|
|
# os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.npy'))
|
|
|
|
mel = torch.from_numpy(mel)
|
|
|
|
|
|
|
|
if len(mel.shape) < 3:
|
|
|
|
mel = mel.unsqueeze(0)
|
|
|
|
|
|
|
|
if self.split:
|
|
|
|
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
|
|
|
|
|
|
|
|
if audio.size(1) >= self.segment_size:
|
|
|
|
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
|
|
|
|
mel = mel[:, :, mel_start:mel_start + frames_per_seg]
|
|
|
|
audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size]
|
|
|
|
else:
|
|
|
|
mel = torch.nn.functional.pad(mel, (0, frames_per_seg - mel.size(2)), 'constant')
|
|
|
|
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
|
|
|
|
|
|
|
|
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels,
|
|
|
|
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss,
|
|
|
|
center=False)
|
|
|
|
|
|
|
|
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.audio_files)
|