MockingBird/mkgui/train_vc.py

155 lines
5.4 KiB
Python
Raw Normal View History

from pydantic import BaseModel, Field
import os
from pathlib import Path
from enum import Enum
from typing import Any, Tuple
import numpy as np
from utils.load_yaml import HpsYaml
from utils.util import AttrDict
import torch
# Constants
EXT_MODELS_DIRT = f"ppg_extractor{os.sep}saved_models"
CONV_MODELS_DIRT = f"ppg2mel{os.sep}saved_models"
ENC_MODELS_DIRT = f"encoder{os.sep}saved_models"
if os.path.isdir(EXT_MODELS_DIRT):
extractors = Enum('extractors', list((file.name, file) for file in Path(EXT_MODELS_DIRT).glob("**/*.pt")))
print("Loaded extractor models: " + str(len(extractors)))
else:
raise Exception(f"Model folder {EXT_MODELS_DIRT} doesn't exist.")
if os.path.isdir(CONV_MODELS_DIRT):
convertors = Enum('convertors', list((file.name, file) for file in Path(CONV_MODELS_DIRT).glob("**/*.pth")))
print("Loaded convertor models: " + str(len(convertors)))
else:
raise Exception(f"Model folder {CONV_MODELS_DIRT} doesn't exist.")
if os.path.isdir(ENC_MODELS_DIRT):
encoders = Enum('encoders', list((file.name, file) for file in Path(ENC_MODELS_DIRT).glob("**/*.pt")))
print("Loaded encoders models: " + str(len(encoders)))
else:
raise Exception(f"Model folder {ENC_MODELS_DIRT} doesn't exist.")
class Model(str, Enum):
VC_PPG2MEL = "ppg2mel"
class Dataset(str, Enum):
AIDATATANG_200ZH = "aidatatang_200zh"
AIDATATANG_200ZH_S = "aidatatang_200zh_s"
class Input(BaseModel):
# def render_input_ui(st, input) -> Dict:
# input["selected_dataset"] = st.selectbox(
# '选择数据集',
# ("aidatatang_200zh", "aidatatang_200zh_s")
# )
# return input
model: Model = Field(
Model.VC_PPG2MEL, title="模型类型",
)
# datasets_root: str = Field(
# ..., alias="预处理数据根目录", description="输入目录(相对/绝对),不适用于ppg2mel模型",
# format=True,
# example="..\\trainning_data\\"
# )
output_root: str = Field(
..., alias="输出目录(可选)", description="建议不填,保持默认",
format=True,
example=""
)
continue_mode: bool = Field(
True, alias="继续训练模式", description="选择“是”,则从下面选择的模型中继续训练",
)
gpu: bool = Field(
True, alias="GPU训练", description="选择“是”则使用GPU训练",
)
verbose: bool = Field(
True, alias="打印详情", description="选择“是”,输出更多详情",
)
# TODO: Move to hiden fields by default
convertor: convertors = Field(
..., alias="转换模型",
description="选择语音转换模型文件."
)
extractor: extractors = Field(
..., alias="特征提取模型",
description="选择PPG特征提取模型文件."
)
encoder: encoders = Field(
..., alias="语音编码模型",
description="选择语音编码模型文件."
)
njobs: int = Field(
8, alias="进程数", description="适用于ppg2mel",
)
seed: int = Field(
default=0, alias="初始随机数", description="适用于ppg2mel",
)
model_name: str = Field(
..., alias="新模型名", description="仅在重新训练时生效,选中继续训练时无效",
example="test"
)
model_config: str = Field(
..., alias="新模型配置", description="仅在重新训练时生效,选中继续训练时无效",
example=".\\ppg2mel\\saved_models\\seq2seq_mol_ppg2mel_vctk_libri_oneshotvc_r4_normMel_v2"
)
class AudioEntity(BaseModel):
content: bytes
mel: Any
class Output(BaseModel):
__root__: Tuple[str, int]
def render_output_ui(self, streamlit_app, input) -> None: # type: ignore
"""Custom output UI.
If this method is implmeneted, it will be used instead of the default Output UI renderer.
"""
sr, count = self.__root__
streamlit_app.subheader(f"Dataset {sr} done processed total of {count}")
def train_vc(input: Input) -> Output:
"""Train VC(训练 VC)"""
print(">>> OneShot VC training ...")
params = AttrDict()
params.update({
"gpu": input.gpu,
"cpu": not input.gpu,
"njobs": input.njobs,
"seed": input.seed,
"verbose": input.verbose,
"load": input.convertor.value,
"warm_start": False,
})
if input.continue_mode:
# trace old model and config
p = Path(input.convertor.value)
params.name = p.parent.name
# search a config file
model_config_fpaths = list(p.parent.rglob("*.yaml"))
if len(model_config_fpaths) == 0:
raise "No model yaml config found for convertor"
config = HpsYaml(model_config_fpaths[0])
params.ckpdir = p.parent.parent
params.config = model_config_fpaths[0]
params.logdir = os.path.join(p.parent, "log")
else:
# Make the config dict dot visitable
config = HpsYaml(input.config)
np.random.seed(input.seed)
torch.manual_seed(input.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(input.seed)
mode = "train"
from ppg2mel.train.train_linglf02mel_seq2seq_oneshotvc import Solver
solver = Solver(config, params, mode)
solver.load_data()
solver.set_model()
solver.exec()
print(">>> Oneshot VC train finished!")
# TODO: pass useful return code
return Output(__root__=(input.dataset, 0))