MockingBird/ppg2mel/utils/nets_utils.py

452 lines
15 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
"""Network related utility tools."""
import logging
from typing import Dict
import numpy as np
import torch
def to_device(m, x):
"""Send tensor into the device of the module.
Args:
m (torch.nn.Module): Torch module.
x (Tensor): Torch tensor.
Returns:
Tensor: Torch tensor located in the same place as torch module.
"""
assert isinstance(m, torch.nn.Module)
device = next(m.parameters()).device
return x.to(device)
def pad_list(xs, pad_value):
"""Perform padding for the list of tensors.
Args:
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
pad_value (float): Value for padding.
Returns:
Tensor: Padded tensor (B, Tmax, `*`).
Examples:
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
>>> x
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
>>> pad_list(x, 0)
tensor([[1., 1., 1., 1.],
[1., 1., 0., 0.],
[1., 0., 0., 0.]])
"""
n_batch = len(xs)
max_len = max(x.size(0) for x in xs)
pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value)
for i in range(n_batch):
pad[i, :xs[i].size(0)] = xs[i]
return pad
def make_pad_mask(lengths, xs=None, length_dim=-1):
"""Make mask tensor containing indices of padded part.
Args:
lengths (LongTensor or List): Batch of lengths (B,).
xs (Tensor, optional): The reference tensor. If set, masks will be the same shape as this tensor.
length_dim (int, optional): Dimension indicator of the above tensor. See the example.
Returns:
Tensor: Mask tensor containing indices of padded part.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
Examples:
With only lengths.
>>> lengths = [5, 3, 2]
>>> make_non_pad_mask(lengths)
masks = [[0, 0, 0, 0 ,0],
[0, 0, 0, 1, 1],
[0, 0, 1, 1, 1]]
With the reference tensor.
>>> xs = torch.zeros((3, 2, 4))
>>> make_pad_mask(lengths, xs)
tensor([[[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0, 0, 0, 1],
[0, 0, 0, 1]],
[[0, 0, 1, 1],
[0, 0, 1, 1]]], dtype=torch.uint8)
>>> xs = torch.zeros((3, 2, 6))
>>> make_pad_mask(lengths, xs)
tensor([[[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1]],
[[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1]],
[[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)
With the reference tensor and dimension indicator.
>>> xs = torch.zeros((3, 6, 6))
>>> make_pad_mask(lengths, xs, 1)
tensor([[[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1]],
[[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1]],
[[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1]]], dtype=torch.uint8)
>>> make_pad_mask(lengths, xs, 2)
tensor([[[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1]],
[[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1]],
[[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)
"""
if length_dim == 0:
raise ValueError('length_dim cannot be 0: {}'.format(length_dim))
if not isinstance(lengths, list):
lengths = lengths.tolist()
bs = int(len(lengths))
if xs is None:
maxlen = int(max(lengths))
else:
maxlen = xs.size(length_dim)
seq_range = torch.arange(0, maxlen, dtype=torch.int64)
seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen)
seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1)
mask = seq_range_expand >= seq_length_expand
if xs is not None:
assert xs.size(0) == bs, (xs.size(0), bs)
if length_dim < 0:
length_dim = xs.dim() + length_dim
# ind = (:, None, ..., None, :, , None, ..., None)
ind = tuple(slice(None) if i in (0, length_dim) else None
for i in range(xs.dim()))
mask = mask[ind].expand_as(xs).to(xs.device)
return mask
def make_non_pad_mask(lengths, xs=None, length_dim=-1):
"""Make mask tensor containing indices of non-padded part.
Args:
lengths (LongTensor or List): Batch of lengths (B,).
xs (Tensor, optional): The reference tensor. If set, masks will be the same shape as this tensor.
length_dim (int, optional): Dimension indicator of the above tensor. See the example.
Returns:
ByteTensor: mask tensor containing indices of padded part.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
Examples:
With only lengths.
>>> lengths = [5, 3, 2]
>>> make_non_pad_mask(lengths)
masks = [[1, 1, 1, 1 ,1],
[1, 1, 1, 0, 0],
[1, 1, 0, 0, 0]]
With the reference tensor.
>>> xs = torch.zeros((3, 2, 4))
>>> make_non_pad_mask(lengths, xs)
tensor([[[1, 1, 1, 1],
[1, 1, 1, 1]],
[[1, 1, 1, 0],
[1, 1, 1, 0]],
[[1, 1, 0, 0],
[1, 1, 0, 0]]], dtype=torch.uint8)
>>> xs = torch.zeros((3, 2, 6))
>>> make_non_pad_mask(lengths, xs)
tensor([[[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0]],
[[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0]],
[[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)
With the reference tensor and dimension indicator.
>>> xs = torch.zeros((3, 6, 6))
>>> make_non_pad_mask(lengths, xs, 1)
tensor([[[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0]],
[[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]],
[[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]]], dtype=torch.uint8)
>>> make_non_pad_mask(lengths, xs, 2)
tensor([[[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 0]],
[[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0]],
[[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)
"""
return ~make_pad_mask(lengths, xs, length_dim)
def mask_by_length(xs, lengths, fill=0):
"""Mask tensor according to length.
Args:
xs (Tensor): Batch of input tensor (B, `*`).
lengths (LongTensor or List): Batch of lengths (B,).
fill (int or float): Value to fill masked part.
Returns:
Tensor: Batch of masked input tensor (B, `*`).
Examples:
>>> x = torch.arange(5).repeat(3, 1) + 1
>>> x
tensor([[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5]])
>>> lengths = [5, 3, 2]
>>> mask_by_length(x, lengths)
tensor([[1, 2, 3, 4, 5],
[1, 2, 3, 0, 0],
[1, 2, 0, 0, 0]])
"""
assert xs.size(0) == len(lengths)
ret = xs.data.new(*xs.size()).fill_(fill)
for i, l in enumerate(lengths):
ret[i, :l] = xs[i, :l]
return ret
def th_accuracy(pad_outputs, pad_targets, ignore_label):
"""Calculate accuracy.
Args:
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
pad_targets (LongTensor): Target label tensors (B, Lmax, D).
ignore_label (int): Ignore label id.
Returns:
float: Accuracy value (0.0 - 1.0).
"""
pad_pred = pad_outputs.view(
pad_targets.size(0),
pad_targets.size(1),
pad_outputs.size(1)).argmax(2)
mask = pad_targets != ignore_label
numerator = torch.sum(pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
denominator = torch.sum(mask)
return float(numerator) / float(denominator)
def to_torch_tensor(x):
"""Change to torch.Tensor or ComplexTensor from numpy.ndarray.
Args:
x: Inputs. It should be one of numpy.ndarray, Tensor, ComplexTensor, and dict.
Returns:
Tensor or ComplexTensor: Type converted inputs.
Examples:
>>> xs = np.ones(3, dtype=np.float32)
>>> xs = to_torch_tensor(xs)
tensor([1., 1., 1.])
>>> xs = torch.ones(3, 4, 5)
>>> assert to_torch_tensor(xs) is xs
>>> xs = {'real': xs, 'imag': xs}
>>> to_torch_tensor(xs)
ComplexTensor(
Real:
tensor([1., 1., 1.])
Imag;
tensor([1., 1., 1.])
)
"""
# If numpy, change to torch tensor
if isinstance(x, np.ndarray):
if x.dtype.kind == 'c':
# Dynamically importing because torch_complex requires python3
from torch_complex.tensor import ComplexTensor
return ComplexTensor(x)
else:
return torch.from_numpy(x)
# If {'real': ..., 'imag': ...}, convert to ComplexTensor
elif isinstance(x, dict):
# Dynamically importing because torch_complex requires python3
from torch_complex.tensor import ComplexTensor
if 'real' not in x or 'imag' not in x:
raise ValueError("has 'real' and 'imag' keys: {}".format(list(x)))
# Relative importing because of using python3 syntax
return ComplexTensor(x['real'], x['imag'])
# If torch.Tensor, as it is
elif isinstance(x, torch.Tensor):
return x
else:
error = ("x must be numpy.ndarray, torch.Tensor or a dict like "
"{{'real': torch.Tensor, 'imag': torch.Tensor}}, "
"but got {}".format(type(x)))
try:
from torch_complex.tensor import ComplexTensor
except Exception:
# If PY2
raise ValueError(error)
else:
# If PY3
if isinstance(x, ComplexTensor):
return x
else:
raise ValueError(error)
def get_subsample(train_args, mode, arch):
"""Parse the subsampling factors from the training args for the specified `mode` and `arch`.
Args:
train_args: argument Namespace containing options.
mode: one of ('asr', 'mt', 'st')
arch: one of ('rnn', 'rnn-t', 'rnn_mix', 'rnn_mulenc', 'transformer')
Returns:
np.ndarray / List[np.ndarray]: subsampling factors.
"""
if arch == 'transformer':
return np.array([1])
elif mode == 'mt' and arch == 'rnn':
# +1 means input (+1) and layers outputs (train_args.elayer)
subsample = np.ones(train_args.elayers + 1, dtype=np.int)
logging.warning('Subsampling is not performed for machine translation.')
logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
return subsample
elif (mode == 'asr' and arch in ('rnn', 'rnn-t')) or \
(mode == 'mt' and arch == 'rnn') or \
(mode == 'st' and arch == 'rnn'):
subsample = np.ones(train_args.elayers + 1, dtype=np.int)
if train_args.etype.endswith("p") and not train_args.etype.startswith("vgg"):
ss = train_args.subsample.split("_")
for j in range(min(train_args.elayers + 1, len(ss))):
subsample[j] = int(ss[j])
else:
logging.warning(
'Subsampling is not performed for vgg*. It is performed in max pooling layers at CNN.')
logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
return subsample
elif mode == 'asr' and arch == 'rnn_mix':
subsample = np.ones(train_args.elayers_sd + train_args.elayers + 1, dtype=np.int)
if train_args.etype.endswith("p") and not train_args.etype.startswith("vgg"):
ss = train_args.subsample.split("_")
for j in range(min(train_args.elayers_sd + train_args.elayers + 1, len(ss))):
subsample[j] = int(ss[j])
else:
logging.warning(
'Subsampling is not performed for vgg*. It is performed in max pooling layers at CNN.')
logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
return subsample
elif mode == 'asr' and arch == 'rnn_mulenc':
subsample_list = []
for idx in range(train_args.num_encs):
subsample = np.ones(train_args.elayers[idx] + 1, dtype=np.int)
if train_args.etype[idx].endswith("p") and not train_args.etype[idx].startswith("vgg"):
ss = train_args.subsample[idx].split("_")
for j in range(min(train_args.elayers[idx] + 1, len(ss))):
subsample[j] = int(ss[j])
else:
logging.warning(
'Encoder %d: Subsampling is not performed for vgg*. '
'It is performed in max pooling layers at CNN.', idx + 1)
logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
subsample_list.append(subsample)
return subsample_list
else:
raise ValueError('Invalid options: mode={}, arch={}'.format(mode, arch))
def rename_state_dict(old_prefix: str, new_prefix: str, state_dict: Dict[str, torch.Tensor]):
"""Replace keys of old prefix with new prefix in state dict."""
# need this list not to break the dict iterator
old_keys = [k for k in state_dict if k.startswith(old_prefix)]
if len(old_keys) > 0:
logging.warning(f'Rename: {old_prefix} -> {new_prefix}')
for k in old_keys:
v = state_dict.pop(k)
new_k = k.replace(old_prefix, new_prefix)
state_dict[new_k] = v