2022-07-17 09:58:17 +08:00
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
class PreNet(nn.Module):
|
|
|
|
def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
|
|
|
|
super().__init__()
|
|
|
|
self.fc1 = nn.Linear(in_dims, fc1_dims)
|
|
|
|
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
|
|
|
|
self.p = dropout
|
|
|
|
|
|
|
|
def forward(self, x):
|
2022-07-17 14:27:45 +08:00
|
|
|
"""forward
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (3D tensor with size `[batch_size, num_chars, tts_embed_dims]`): input texts list
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
3D tensor with size `[batch_size, num_chars, encoder_dims]`
|
|
|
|
|
|
|
|
"""
|
2022-07-17 09:58:17 +08:00
|
|
|
x = self.fc1(x)
|
|
|
|
x = F.relu(x)
|
|
|
|
x = F.dropout(x, self.p, training=True)
|
|
|
|
x = self.fc2(x)
|
|
|
|
x = F.relu(x)
|
|
|
|
x = F.dropout(x, self.p, training=True)
|
|
|
|
return x
|