MockingBird/synthesizer/models/sublayer/cbhg.py

86 lines
2.8 KiB
Python
Raw Normal View History

import torch
import torch.nn as nn
from .common.batch_norm_conv import BatchNormConv
from .common.highway_network import HighwayNetwork
class CBHG(nn.Module):
def __init__(self, K, in_channels, channels, proj_channels, num_highways):
super().__init__()
# List of all rnns to call `flatten_parameters()` on
self._to_flatten = []
self.bank_kernels = [i for i in range(1, K + 1)]
self.conv1d_bank = nn.ModuleList()
for k in self.bank_kernels:
conv = BatchNormConv(in_channels, channels, k)
self.conv1d_bank.append(conv)
self.maxpool = nn.MaxPool1d(kernel_size=2, stride=1, padding=1)
self.conv_project1 = BatchNormConv(len(self.bank_kernels) * channels, proj_channels[0], 3)
self.conv_project2 = BatchNormConv(proj_channels[0], proj_channels[1], 3, relu=False)
# Fix the highway input if necessary
if proj_channels[-1] != channels:
self.highway_mismatch = True
self.pre_highway = nn.Linear(proj_channels[-1], channels, bias=False)
else:
self.highway_mismatch = False
self.highways = nn.ModuleList()
for i in range(num_highways):
hn = HighwayNetwork(channels)
self.highways.append(hn)
self.rnn = nn.GRU(channels, channels // 2, batch_first=True, bidirectional=True)
self._to_flatten.append(self.rnn)
# Avoid fragmentation of RNN parameters and associated warning
self._flatten_parameters()
def forward(self, x):
# Although we `_flatten_parameters()` on init, when using DataParallel
# the model gets replicated, making it no longer guaranteed that the
# weights are contiguous in GPU memory. Hence, we must call it again
self.rnn.flatten_parameters()
# Save these for later
residual = x
seq_len = x.size(-1)
conv_bank = []
# Convolution Bank
for conv in self.conv1d_bank:
c = conv(x) # Convolution
conv_bank.append(c[:, :, :seq_len])
# Stack along the channel axis
conv_bank = torch.cat(conv_bank, dim=1)
# dump the last padding to fit residual
x = self.maxpool(conv_bank)[:, :, :seq_len]
# Conv1d projections
x = self.conv_project1(x)
x = self.conv_project2(x)
# Residual Connect
x = x + residual
# Through the highways
x = x.transpose(1, 2)
if self.highway_mismatch is True:
x = self.pre_highway(x)
for h in self.highways: x = h(x)
# And then the RNN
x, _ = self.rnn(x)
return x
def _flatten_parameters(self):
"""Calls `flatten_parameters` on all the rnns used by the WaveRNN. Used
to improve efficiency and avoid PyTorch yelling at us."""
[m.flatten_parameters() for m in self._to_flatten]