2022-12-03 16:54:06 +08:00
|
|
|
from models.vocoder.wavernn.models.fatchord_version import WaveRNN
|
|
|
|
from models.vocoder.vocoder_dataset import VocoderDataset, collate_vocoder
|
|
|
|
from models.vocoder.distribution import discretized_mix_logistic_loss
|
|
|
|
from models.vocoder.display import stream, simple_table
|
|
|
|
from models.vocoder.wavernn.gen_wavernn import gen_testset
|
2021-08-07 11:56:00 +08:00
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
from pathlib import Path
|
|
|
|
from torch import optim
|
|
|
|
import torch.nn.functional as F
|
2023-02-01 19:59:15 +08:00
|
|
|
import models.vocoder.wavernn.hparams as hp
|
2021-08-07 11:56:00 +08:00
|
|
|
import numpy as np
|
|
|
|
import time
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
|
|
def train(run_id: str, syn_dir: Path, voc_dir: Path, models_dir: Path, ground_truth: bool,
|
|
|
|
save_every: int, backup_every: int, force_restart: bool):
|
|
|
|
# Check to make sure the hop length is correctly factorised
|
|
|
|
assert np.cumprod(hp.voc_upsample_factors)[-1] == hp.hop_length
|
|
|
|
|
|
|
|
# Instantiate the model
|
|
|
|
print("Initializing the model...")
|
|
|
|
model = WaveRNN(
|
|
|
|
rnn_dims=hp.voc_rnn_dims,
|
|
|
|
fc_dims=hp.voc_fc_dims,
|
|
|
|
bits=hp.bits,
|
|
|
|
pad=hp.voc_pad,
|
|
|
|
upsample_factors=hp.voc_upsample_factors,
|
|
|
|
feat_dims=hp.num_mels,
|
|
|
|
compute_dims=hp.voc_compute_dims,
|
|
|
|
res_out_dims=hp.voc_res_out_dims,
|
|
|
|
res_blocks=hp.voc_res_blocks,
|
|
|
|
hop_length=hp.hop_length,
|
|
|
|
sample_rate=hp.sample_rate,
|
|
|
|
mode=hp.voc_mode
|
|
|
|
)
|
|
|
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
model = model.cuda()
|
|
|
|
device = torch.device('cuda')
|
|
|
|
else:
|
|
|
|
device = torch.device('cpu')
|
|
|
|
|
|
|
|
# Initialize the optimizer
|
|
|
|
optimizer = optim.Adam(model.parameters())
|
|
|
|
for p in optimizer.param_groups:
|
|
|
|
p["lr"] = hp.voc_lr
|
|
|
|
loss_func = F.cross_entropy if model.mode == "RAW" else discretized_mix_logistic_loss
|
|
|
|
|
|
|
|
# Load the weights
|
|
|
|
model_dir = models_dir.joinpath(run_id)
|
|
|
|
model_dir.mkdir(exist_ok=True)
|
|
|
|
weights_fpath = model_dir.joinpath(run_id + ".pt")
|
|
|
|
if force_restart or not weights_fpath.exists():
|
|
|
|
print("\nStarting the training of WaveRNN from scratch\n")
|
|
|
|
model.save(weights_fpath, optimizer)
|
|
|
|
else:
|
|
|
|
print("\nLoading weights at %s" % weights_fpath)
|
|
|
|
model.load(weights_fpath, optimizer)
|
|
|
|
print("WaveRNN weights loaded from step %d" % model.step)
|
|
|
|
|
|
|
|
# Initialize the dataset
|
|
|
|
metadata_fpath = syn_dir.joinpath("train.txt") if ground_truth else \
|
|
|
|
voc_dir.joinpath("synthesized.txt")
|
|
|
|
mel_dir = syn_dir.joinpath("mels") if ground_truth else voc_dir.joinpath("mels_gta")
|
|
|
|
wav_dir = syn_dir.joinpath("audio")
|
|
|
|
dataset = VocoderDataset(metadata_fpath, mel_dir, wav_dir)
|
|
|
|
test_loader = DataLoader(dataset,
|
|
|
|
batch_size=1,
|
|
|
|
shuffle=True,
|
|
|
|
pin_memory=True)
|
|
|
|
|
|
|
|
# Begin the training
|
|
|
|
simple_table([('Batch size', hp.voc_batch_size),
|
|
|
|
('LR', hp.voc_lr),
|
|
|
|
('Sequence Len', hp.voc_seq_len)])
|
|
|
|
|
|
|
|
for epoch in range(1, 350):
|
|
|
|
data_loader = DataLoader(dataset,
|
|
|
|
collate_fn=collate_vocoder,
|
|
|
|
batch_size=hp.voc_batch_size,
|
|
|
|
num_workers=2,
|
|
|
|
shuffle=True,
|
|
|
|
pin_memory=True)
|
|
|
|
start = time.time()
|
|
|
|
running_loss = 0.
|
|
|
|
|
|
|
|
for i, (x, y, m) in enumerate(data_loader, 1):
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
x, m, y = x.cuda(), m.cuda(), y.cuda()
|
|
|
|
|
|
|
|
# Forward pass
|
|
|
|
y_hat = model(x, m)
|
|
|
|
if model.mode == 'RAW':
|
|
|
|
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
|
|
|
|
elif model.mode == 'MOL':
|
|
|
|
y = y.float()
|
|
|
|
y = y.unsqueeze(-1)
|
|
|
|
|
|
|
|
# Backward pass
|
|
|
|
loss = loss_func(y_hat, y)
|
|
|
|
optimizer.zero_grad()
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
running_loss += loss.item()
|
|
|
|
speed = i / (time.time() - start)
|
|
|
|
avg_loss = running_loss / i
|
|
|
|
|
|
|
|
step = model.get_step()
|
|
|
|
k = step // 1000
|
|
|
|
|
|
|
|
if backup_every != 0 and step % backup_every == 0 :
|
|
|
|
model.checkpoint(model_dir, optimizer)
|
|
|
|
|
|
|
|
if save_every != 0 and step % save_every == 0 :
|
|
|
|
model.save(weights_fpath, optimizer)
|
|
|
|
|
|
|
|
msg = f"| Epoch: {epoch} ({i}/{len(data_loader)}) | " \
|
|
|
|
f"Loss: {avg_loss:.4f} | {speed:.1f} " \
|
|
|
|
f"steps/s | Step: {k}k | "
|
|
|
|
stream(msg)
|
|
|
|
|
|
|
|
|
|
|
|
gen_testset(model, test_loader, hp.voc_gen_at_checkpoint, hp.voc_gen_batched,
|
|
|
|
hp.voc_target, hp.voc_overlap, model_dir)
|
|
|
|
print("")
|