mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
83 lines
2.1 KiB
Python
83 lines
2.1 KiB
Python
|
from typing import Tuple
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from .nets_utils import make_pad_mask
|
||
|
|
||
|
|
||
|
class UtteranceMVN(torch.nn.Module):
|
||
|
def __init__(
|
||
|
self, norm_means: bool = True, norm_vars: bool = False, eps: float = 1.0e-20,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.norm_means = norm_means
|
||
|
self.norm_vars = norm_vars
|
||
|
self.eps = eps
|
||
|
|
||
|
def extra_repr(self):
|
||
|
return f"norm_means={self.norm_means}, norm_vars={self.norm_vars}"
|
||
|
|
||
|
def forward(
|
||
|
self, x: torch.Tensor, ilens: torch.Tensor = None
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
"""Forward function
|
||
|
|
||
|
Args:
|
||
|
x: (B, L, ...)
|
||
|
ilens: (B,)
|
||
|
|
||
|
"""
|
||
|
return utterance_mvn(
|
||
|
x,
|
||
|
ilens,
|
||
|
norm_means=self.norm_means,
|
||
|
norm_vars=self.norm_vars,
|
||
|
eps=self.eps,
|
||
|
)
|
||
|
|
||
|
|
||
|
def utterance_mvn(
|
||
|
x: torch.Tensor,
|
||
|
ilens: torch.Tensor = None,
|
||
|
norm_means: bool = True,
|
||
|
norm_vars: bool = False,
|
||
|
eps: float = 1.0e-20,
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
"""Apply utterance mean and variance normalization
|
||
|
|
||
|
Args:
|
||
|
x: (B, T, D), assumed zero padded
|
||
|
ilens: (B,)
|
||
|
norm_means:
|
||
|
norm_vars:
|
||
|
eps:
|
||
|
|
||
|
"""
|
||
|
if ilens is None:
|
||
|
ilens = x.new_full([x.size(0)], x.size(1))
|
||
|
ilens_ = ilens.to(x.device, x.dtype).view(-1, *[1 for _ in range(x.dim() - 1)])
|
||
|
# Zero padding
|
||
|
if x.requires_grad:
|
||
|
x = x.masked_fill(make_pad_mask(ilens, x, 1), 0.0)
|
||
|
else:
|
||
|
x.masked_fill_(make_pad_mask(ilens, x, 1), 0.0)
|
||
|
# mean: (B, 1, D)
|
||
|
mean = x.sum(dim=1, keepdim=True) / ilens_
|
||
|
|
||
|
if norm_means:
|
||
|
x -= mean
|
||
|
|
||
|
if norm_vars:
|
||
|
var = x.pow(2).sum(dim=1, keepdim=True) / ilens_
|
||
|
std = torch.clamp(var.sqrt(), min=eps)
|
||
|
x = x / std.sqrt()
|
||
|
return x, ilens
|
||
|
else:
|
||
|
if norm_vars:
|
||
|
y = x - mean
|
||
|
y.masked_fill_(make_pad_mask(ilens, y, 1), 0.0)
|
||
|
var = y.pow(2).sum(dim=1, keepdim=True) / ilens_
|
||
|
std = torch.clamp(var.sqrt(), min=eps)
|
||
|
x /= std
|
||
|
return x, ilens
|