mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
116 lines
4.0 KiB
Python
116 lines
4.0 KiB
Python
|
import copy
|
||
|
from typing import Tuple
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from torch_complex.tensor import ComplexTensor
|
||
|
|
||
|
from .log_mel import LogMel
|
||
|
from .stft import Stft
|
||
|
|
||
|
|
||
|
class DefaultFrontend(torch.nn.Module):
|
||
|
"""Conventional frontend structure for ASR
|
||
|
|
||
|
Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
fs: 16000,
|
||
|
n_fft: int = 1024,
|
||
|
win_length: int = 800,
|
||
|
hop_length: int = 160,
|
||
|
center: bool = True,
|
||
|
pad_mode: str = "reflect",
|
||
|
normalized: bool = False,
|
||
|
onesided: bool = True,
|
||
|
n_mels: int = 80,
|
||
|
fmin: int = None,
|
||
|
fmax: int = None,
|
||
|
htk: bool = False,
|
||
|
norm=1,
|
||
|
frontend_conf=None, #Optional[dict] = get_default_kwargs(Frontend),
|
||
|
kaldi_padding_mode=False,
|
||
|
downsample_rate: int = 1,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.downsample_rate = downsample_rate
|
||
|
|
||
|
# Deepcopy (In general, dict shouldn't be used as default arg)
|
||
|
frontend_conf = copy.deepcopy(frontend_conf)
|
||
|
|
||
|
self.stft = Stft(
|
||
|
n_fft=n_fft,
|
||
|
win_length=win_length,
|
||
|
hop_length=hop_length,
|
||
|
center=center,
|
||
|
pad_mode=pad_mode,
|
||
|
normalized=normalized,
|
||
|
onesided=onesided,
|
||
|
kaldi_padding_mode=kaldi_padding_mode
|
||
|
)
|
||
|
if frontend_conf is not None:
|
||
|
self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf)
|
||
|
else:
|
||
|
self.frontend = None
|
||
|
|
||
|
self.logmel = LogMel(
|
||
|
fs=fs, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax, htk=htk, norm=norm,
|
||
|
)
|
||
|
self.n_mels = n_mels
|
||
|
|
||
|
def output_size(self) -> int:
|
||
|
return self.n_mels
|
||
|
|
||
|
def forward(
|
||
|
self, input: torch.Tensor, input_lengths: torch.Tensor
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
# 1. Domain-conversion: e.g. Stft: time -> time-freq
|
||
|
input_stft, feats_lens = self.stft(input, input_lengths)
|
||
|
|
||
|
assert input_stft.dim() >= 4, input_stft.shape
|
||
|
# "2" refers to the real/imag parts of Complex
|
||
|
assert input_stft.shape[-1] == 2, input_stft.shape
|
||
|
|
||
|
# Change torch.Tensor to ComplexTensor
|
||
|
# input_stft: (..., F, 2) -> (..., F)
|
||
|
input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1])
|
||
|
|
||
|
# 2. [Option] Speech enhancement
|
||
|
if self.frontend is not None:
|
||
|
assert isinstance(input_stft, ComplexTensor), type(input_stft)
|
||
|
# input_stft: (Batch, Length, [Channel], Freq)
|
||
|
input_stft, _, mask = self.frontend(input_stft, feats_lens)
|
||
|
|
||
|
# 3. [Multi channel case]: Select a channel
|
||
|
if input_stft.dim() == 4:
|
||
|
# h: (B, T, C, F) -> h: (B, T, F)
|
||
|
if self.training:
|
||
|
# Select 1ch randomly
|
||
|
ch = np.random.randint(input_stft.size(2))
|
||
|
input_stft = input_stft[:, :, ch, :]
|
||
|
else:
|
||
|
# Use the first channel
|
||
|
input_stft = input_stft[:, :, 0, :]
|
||
|
|
||
|
# 4. STFT -> Power spectrum
|
||
|
# h: ComplexTensor(B, T, F) -> torch.Tensor(B, T, F)
|
||
|
input_power = input_stft.real ** 2 + input_stft.imag ** 2
|
||
|
|
||
|
# 5. Feature transform e.g. Stft -> Log-Mel-Fbank
|
||
|
# input_power: (Batch, [Channel,] Length, Freq)
|
||
|
# -> input_feats: (Batch, Length, Dim)
|
||
|
input_feats, _ = self.logmel(input_power, feats_lens)
|
||
|
|
||
|
# NOTE(sx): pad
|
||
|
max_len = input_feats.size(1)
|
||
|
if self.downsample_rate > 1 and max_len % self.downsample_rate != 0:
|
||
|
padding = self.downsample_rate - max_len % self.downsample_rate
|
||
|
# print("Logmel: ", input_feats.size())
|
||
|
input_feats = torch.nn.functional.pad(input_feats, (0, 0, 0, padding),
|
||
|
"constant", 0)
|
||
|
# print("Logmel(after padding): ",input_feats.size())
|
||
|
feats_lens[torch.argmax(feats_lens)] = max_len + padding
|
||
|
|
||
|
return input_feats, feats_lens
|