MockingBird/models/ppg_extractor/frontend.py

116 lines
4.0 KiB
Python
Raw Normal View History

import copy
from typing import Tuple
import numpy as np
import torch
from torch_complex.tensor import ComplexTensor
from .log_mel import LogMel
from .stft import Stft
class DefaultFrontend(torch.nn.Module):
"""Conventional frontend structure for ASR
Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN
"""
def __init__(
self,
fs: 16000,
n_fft: int = 1024,
win_length: int = 800,
hop_length: int = 160,
center: bool = True,
pad_mode: str = "reflect",
normalized: bool = False,
onesided: bool = True,
n_mels: int = 80,
fmin: int = None,
fmax: int = None,
htk: bool = False,
norm=1,
frontend_conf=None, #Optional[dict] = get_default_kwargs(Frontend),
kaldi_padding_mode=False,
downsample_rate: int = 1,
):
super().__init__()
self.downsample_rate = downsample_rate
# Deepcopy (In general, dict shouldn't be used as default arg)
frontend_conf = copy.deepcopy(frontend_conf)
self.stft = Stft(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=center,
pad_mode=pad_mode,
normalized=normalized,
onesided=onesided,
kaldi_padding_mode=kaldi_padding_mode
)
if frontend_conf is not None:
self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf)
else:
self.frontend = None
self.logmel = LogMel(
fs=fs, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax, htk=htk, norm=norm,
)
self.n_mels = n_mels
def output_size(self) -> int:
return self.n_mels
def forward(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Domain-conversion: e.g. Stft: time -> time-freq
input_stft, feats_lens = self.stft(input, input_lengths)
assert input_stft.dim() >= 4, input_stft.shape
# "2" refers to the real/imag parts of Complex
assert input_stft.shape[-1] == 2, input_stft.shape
# Change torch.Tensor to ComplexTensor
# input_stft: (..., F, 2) -> (..., F)
input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1])
# 2. [Option] Speech enhancement
if self.frontend is not None:
assert isinstance(input_stft, ComplexTensor), type(input_stft)
# input_stft: (Batch, Length, [Channel], Freq)
input_stft, _, mask = self.frontend(input_stft, feats_lens)
# 3. [Multi channel case]: Select a channel
if input_stft.dim() == 4:
# h: (B, T, C, F) -> h: (B, T, F)
if self.training:
# Select 1ch randomly
ch = np.random.randint(input_stft.size(2))
input_stft = input_stft[:, :, ch, :]
else:
# Use the first channel
input_stft = input_stft[:, :, 0, :]
# 4. STFT -> Power spectrum
# h: ComplexTensor(B, T, F) -> torch.Tensor(B, T, F)
input_power = input_stft.real ** 2 + input_stft.imag ** 2
# 5. Feature transform e.g. Stft -> Log-Mel-Fbank
# input_power: (Batch, [Channel,] Length, Freq)
# -> input_feats: (Batch, Length, Dim)
input_feats, _ = self.logmel(input_power, feats_lens)
# NOTE(sx): pad
max_len = input_feats.size(1)
if self.downsample_rate > 1 and max_len % self.downsample_rate != 0:
padding = self.downsample_rate - max_len % self.downsample_rate
# print("Logmel: ", input_feats.size())
input_feats = torch.nn.functional.pad(input_feats, (0, 0, 0, padding),
"constant", 0)
# print("Logmel(after padding): ",input_feats.size())
feats_lens[torch.argmax(feats_lens)] = max_len + padding
return input_feats, feats_lens