2023-02-04 14:13:38 +08:00
|
|
|
import numpy as np
|
2022-03-03 23:38:12 +08:00
|
|
|
import torch
|
|
|
|
import torch.utils.data
|
|
|
|
from scipy.io.wavfile import read
|
|
|
|
from librosa.filters import mel as librosa_mel_fn
|
|
|
|
|
|
|
|
MAX_WAV_VALUE = 32768.0
|
|
|
|
|
2023-02-04 14:13:38 +08:00
|
|
|
mel_basis = {}
|
|
|
|
hann_window = {}
|
2022-03-03 23:38:12 +08:00
|
|
|
|
|
|
|
def load_wav(full_path):
|
|
|
|
sampling_rate, data = read(full_path)
|
|
|
|
return data, sampling_rate
|
|
|
|
|
2023-02-04 14:13:38 +08:00
|
|
|
def load_wav_to_torch(full_path):
|
|
|
|
sampling_rate, data = read(full_path)
|
|
|
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
2022-03-03 23:38:12 +08:00
|
|
|
|
2023-02-04 14:13:38 +08:00
|
|
|
def spectrogram(y, n_fft, hop_size, win_size, center=False):
|
|
|
|
if torch.min(y) < -1.:
|
|
|
|
print('min value is ', torch.min(y))
|
|
|
|
if torch.max(y) > 1.:
|
|
|
|
print('max value is ', torch.max(y))
|
2023-02-10 20:34:01 +08:00
|
|
|
|
2023-02-04 14:13:38 +08:00
|
|
|
global hann_window
|
|
|
|
dtype_device = str(y.dtype) + '_' + str(y.device)
|
|
|
|
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
|
|
|
if wnsize_dtype_device not in hann_window:
|
|
|
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
|
|
|
|
|
|
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
|
|
|
y = y.squeeze(1)
|
|
|
|
|
|
|
|
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
2023-02-10 20:34:01 +08:00
|
|
|
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
2023-02-04 14:13:38 +08:00
|
|
|
|
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
|
|
|
return spec
|
|
|
|
|
|
|
|
def spec_to_mel(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
|
|
|
global mel_basis
|
|
|
|
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
|
|
|
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
|
|
|
if fmax_dtype_device not in mel_basis:
|
|
|
|
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
|
|
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
|
|
|
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
|
|
|
spec = _spectral_normalize_torch(spec)
|
|
|
|
return spec
|
2022-03-03 23:38:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def mel_spectrogram(
|
|
|
|
y,
|
|
|
|
n_fft,
|
|
|
|
num_mels,
|
|
|
|
sampling_rate,
|
|
|
|
hop_size,
|
|
|
|
win_size,
|
|
|
|
fmin,
|
|
|
|
fmax,
|
|
|
|
center=False,
|
|
|
|
output_energy=False,
|
|
|
|
):
|
|
|
|
if torch.min(y) < -1.:
|
|
|
|
print('min value is ', torch.min(y))
|
|
|
|
if torch.max(y) > 1.:
|
|
|
|
print('max value is ', torch.max(y))
|
|
|
|
|
|
|
|
global mel_basis, hann_window
|
2023-02-04 17:00:49 +08:00
|
|
|
if fmax not in mel_basis:
|
2022-03-03 23:38:12 +08:00
|
|
|
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
2023-02-04 17:00:49 +08:00
|
|
|
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
|
|
|
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
|
|
|
|
2022-03-03 23:38:12 +08:00
|
|
|
|
|
|
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
|
|
|
y = y.squeeze(1)
|
|
|
|
|
|
|
|
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
|
|
|
|
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
2023-02-04 14:13:38 +08:00
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-6))
|
2022-03-03 23:38:12 +08:00
|
|
|
mel_spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
|
|
|
|
mel_spec = _spectral_normalize_torch(mel_spec)
|
|
|
|
if output_energy:
|
|
|
|
energy = torch.norm(spec, dim=1)
|
|
|
|
return mel_spec, energy
|
|
|
|
else:
|
|
|
|
return mel_spec
|
2023-02-04 14:13:38 +08:00
|
|
|
|
|
|
|
|
|
|
|
def _dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
|
|
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
|
|
|
|
|
|
|
|
|
|
|
def _spectral_normalize_torch(magnitudes):
|
|
|
|
output = _dynamic_range_compression_torch(magnitudes)
|
|
|
|
return output
|