2021-08-07 11:56:00 +08:00
|
|
|
from torch.utils.data import Dataset
|
|
|
|
from pathlib import Path
|
2022-12-03 16:54:06 +08:00
|
|
|
from models.vocoder.wavernn import audio
|
2023-02-01 19:59:15 +08:00
|
|
|
import models.vocoder.wavernn.hparams as hp
|
2021-08-07 11:56:00 +08:00
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
|
|
class VocoderDataset(Dataset):
|
|
|
|
def __init__(self, metadata_fpath: Path, mel_dir: Path, wav_dir: Path):
|
|
|
|
print("Using inputs from:\n\t%s\n\t%s\n\t%s" % (metadata_fpath, mel_dir, wav_dir))
|
|
|
|
|
|
|
|
with metadata_fpath.open("r") as metadata_file:
|
|
|
|
metadata = [line.split("|") for line in metadata_file]
|
|
|
|
|
|
|
|
gta_fnames = [x[1] for x in metadata if int(x[4])]
|
|
|
|
gta_fpaths = [mel_dir.joinpath(fname) for fname in gta_fnames]
|
|
|
|
wav_fnames = [x[0] for x in metadata if int(x[4])]
|
|
|
|
wav_fpaths = [wav_dir.joinpath(fname) for fname in wav_fnames]
|
|
|
|
self.samples_fpaths = list(zip(gta_fpaths, wav_fpaths))
|
|
|
|
|
|
|
|
print("Found %d samples" % len(self.samples_fpaths))
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
mel_path, wav_path = self.samples_fpaths[index]
|
|
|
|
|
|
|
|
# Load the mel spectrogram and adjust its range to [-1, 1]
|
|
|
|
mel = np.load(mel_path).T.astype(np.float32) / hp.mel_max_abs_value
|
|
|
|
|
|
|
|
# Load the wav
|
|
|
|
wav = np.load(wav_path)
|
|
|
|
if hp.apply_preemphasis:
|
|
|
|
wav = audio.pre_emphasis(wav)
|
|
|
|
wav = np.clip(wav, -1, 1)
|
|
|
|
|
|
|
|
# Fix for missing padding # TODO: settle on whether this is any useful
|
|
|
|
r_pad = (len(wav) // hp.hop_length + 1) * hp.hop_length - len(wav)
|
|
|
|
wav = np.pad(wav, (0, r_pad), mode='constant')
|
|
|
|
assert len(wav) >= mel.shape[1] * hp.hop_length
|
|
|
|
wav = wav[:mel.shape[1] * hp.hop_length]
|
|
|
|
assert len(wav) % hp.hop_length == 0
|
|
|
|
|
|
|
|
# Quantize the wav
|
|
|
|
if hp.voc_mode == 'RAW':
|
|
|
|
if hp.mu_law:
|
|
|
|
quant = audio.encode_mu_law(wav, mu=2 ** hp.bits)
|
|
|
|
else:
|
|
|
|
quant = audio.float_2_label(wav, bits=hp.bits)
|
|
|
|
elif hp.voc_mode == 'MOL':
|
|
|
|
quant = audio.float_2_label(wav, bits=16)
|
|
|
|
|
|
|
|
return mel.astype(np.float32), quant.astype(np.int64)
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.samples_fpaths)
|
|
|
|
|
|
|
|
|
|
|
|
def collate_vocoder(batch):
|
|
|
|
mel_win = hp.voc_seq_len // hp.hop_length + 2 * hp.voc_pad
|
|
|
|
max_offsets = [x[0].shape[-1] -2 - (mel_win + 2 * hp.voc_pad) for x in batch]
|
|
|
|
mel_offsets = [np.random.randint(0, offset) for offset in max_offsets]
|
|
|
|
sig_offsets = [(offset + hp.voc_pad) * hp.hop_length for offset in mel_offsets]
|
|
|
|
|
|
|
|
mels = [x[0][:, mel_offsets[i]:mel_offsets[i] + mel_win] for i, x in enumerate(batch)]
|
|
|
|
|
|
|
|
labels = [x[1][sig_offsets[i]:sig_offsets[i] + hp.voc_seq_len + 1] for i, x in enumerate(batch)]
|
|
|
|
|
|
|
|
mels = np.stack(mels).astype(np.float32)
|
|
|
|
labels = np.stack(labels).astype(np.int64)
|
|
|
|
|
|
|
|
mels = torch.tensor(mels)
|
|
|
|
labels = torch.tensor(labels).long()
|
|
|
|
|
|
|
|
x = labels[:, :hp.voc_seq_len]
|
|
|
|
y = labels[:, 1:]
|
|
|
|
|
|
|
|
bits = 16 if hp.voc_mode == 'MOL' else hp.bits
|
|
|
|
|
|
|
|
x = audio.label_2_float(x.float(), bits)
|
|
|
|
|
|
|
|
if hp.voc_mode == 'MOL' :
|
|
|
|
y = audio.label_2_float(y.float(), bits)
|
|
|
|
|
|
|
|
return x, y, mels
|