mirror of
https://github.com/babysor/MockingBird.git
synced 2024-03-22 13:11:31 +08:00
248 lines
9.0 KiB
Python
248 lines
9.0 KiB
Python
|
# The MIT License (MIT)
|
||
|
#
|
||
|
# Copyright (c) 2015 braindead
|
||
|
#
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
# of this software and associated documentation files (the "Software"), to deal
|
||
|
# in the Software without restriction, including without limitation the rights
|
||
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
# copies of the Software, and to permit persons to whom the Software is
|
||
|
# furnished to do so, subject to the following conditions:
|
||
|
#
|
||
|
# The above copyright notice and this permission notice shall be included in all
|
||
|
# copies or substantial portions of the Software.
|
||
|
#
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
# SOFTWARE.
|
||
|
#
|
||
|
#
|
||
|
# This code was extracted from the logmmse package (https://pypi.org/project/logmmse/) and I
|
||
|
# simply modified the interface to meet my needs.
|
||
|
|
||
|
|
||
|
import numpy as np
|
||
|
import math
|
||
|
from scipy.special import expn
|
||
|
from collections import namedtuple
|
||
|
|
||
|
NoiseProfile = namedtuple("NoiseProfile", "sampling_rate window_size len1 len2 win n_fft noise_mu2")
|
||
|
|
||
|
|
||
|
def profile_noise(noise, sampling_rate, window_size=0):
|
||
|
"""
|
||
|
Creates a profile of the noise in a given waveform.
|
||
|
|
||
|
:param noise: a waveform containing noise ONLY, as a numpy array of floats or ints.
|
||
|
:param sampling_rate: the sampling rate of the audio
|
||
|
:param window_size: the size of the window the logmmse algorithm operates on. A default value
|
||
|
will be picked if left as 0.
|
||
|
:return: a NoiseProfile object
|
||
|
"""
|
||
|
noise, dtype = to_float(noise)
|
||
|
noise += np.finfo(np.float64).eps
|
||
|
|
||
|
if window_size == 0:
|
||
|
window_size = int(math.floor(0.02 * sampling_rate))
|
||
|
|
||
|
if window_size % 2 == 1:
|
||
|
window_size = window_size + 1
|
||
|
|
||
|
perc = 50
|
||
|
len1 = int(math.floor(window_size * perc / 100))
|
||
|
len2 = int(window_size - len1)
|
||
|
|
||
|
win = np.hanning(window_size)
|
||
|
win = win * len2 / np.sum(win)
|
||
|
n_fft = 2 * window_size
|
||
|
|
||
|
noise_mean = np.zeros(n_fft)
|
||
|
n_frames = len(noise) // window_size
|
||
|
for j in range(0, window_size * n_frames, window_size):
|
||
|
noise_mean += np.absolute(np.fft.fft(win * noise[j:j + window_size], n_fft, axis=0))
|
||
|
noise_mu2 = (noise_mean / n_frames) ** 2
|
||
|
|
||
|
return NoiseProfile(sampling_rate, window_size, len1, len2, win, n_fft, noise_mu2)
|
||
|
|
||
|
|
||
|
def denoise(wav, noise_profile: NoiseProfile, eta=0.15):
|
||
|
"""
|
||
|
Cleans the noise from a speech waveform given a noise profile. The waveform must have the
|
||
|
same sampling rate as the one used to create the noise profile.
|
||
|
|
||
|
:param wav: a speech waveform as a numpy array of floats or ints.
|
||
|
:param noise_profile: a NoiseProfile object that was created from a similar (or a segment of
|
||
|
the same) waveform.
|
||
|
:param eta: voice threshold for noise update. While the voice activation detection value is
|
||
|
below this threshold, the noise profile will be continuously updated throughout the audio.
|
||
|
Set to 0 to disable updating the noise profile.
|
||
|
:return: the clean wav as a numpy array of floats or ints of the same length.
|
||
|
"""
|
||
|
wav, dtype = to_float(wav)
|
||
|
wav += np.finfo(np.float64).eps
|
||
|
p = noise_profile
|
||
|
|
||
|
nframes = int(math.floor(len(wav) / p.len2) - math.floor(p.window_size / p.len2))
|
||
|
x_final = np.zeros(nframes * p.len2)
|
||
|
|
||
|
aa = 0.98
|
||
|
mu = 0.98
|
||
|
ksi_min = 10 ** (-25 / 10)
|
||
|
|
||
|
x_old = np.zeros(p.len1)
|
||
|
xk_prev = np.zeros(p.len1)
|
||
|
noise_mu2 = p.noise_mu2
|
||
|
for k in range(0, nframes * p.len2, p.len2):
|
||
|
insign = p.win * wav[k:k + p.window_size]
|
||
|
|
||
|
spec = np.fft.fft(insign, p.n_fft, axis=0)
|
||
|
sig = np.absolute(spec)
|
||
|
sig2 = sig ** 2
|
||
|
|
||
|
gammak = np.minimum(sig2 / noise_mu2, 40)
|
||
|
|
||
|
if xk_prev.all() == 0:
|
||
|
ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0)
|
||
|
else:
|
||
|
ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0)
|
||
|
ksi = np.maximum(ksi_min, ksi)
|
||
|
|
||
|
log_sigma_k = gammak * ksi/(1 + ksi) - np.log(1 + ksi)
|
||
|
vad_decision = np.sum(log_sigma_k) / p.window_size
|
||
|
if vad_decision < eta:
|
||
|
noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2
|
||
|
|
||
|
a = ksi / (1 + ksi)
|
||
|
vk = a * gammak
|
||
|
ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8))
|
||
|
hw = a * np.exp(ei_vk)
|
||
|
sig = sig * hw
|
||
|
xk_prev = sig ** 2
|
||
|
xi_w = np.fft.ifft(hw * spec, p.n_fft, axis=0)
|
||
|
xi_w = np.real(xi_w)
|
||
|
|
||
|
x_final[k:k + p.len2] = x_old + xi_w[0:p.len1]
|
||
|
x_old = xi_w[p.len1:p.window_size]
|
||
|
|
||
|
output = from_float(x_final, dtype)
|
||
|
output = np.pad(output, (0, len(wav) - len(output)), mode="constant")
|
||
|
return output
|
||
|
|
||
|
|
||
|
## Alternative VAD algorithm to webrctvad. It has the advantage of not requiring to install that
|
||
|
## darn package and it also works for any sampling rate. Maybe I'll eventually use it instead of
|
||
|
## webrctvad
|
||
|
# def vad(wav, sampling_rate, eta=0.15, window_size=0):
|
||
|
# """
|
||
|
# TODO: fix doc
|
||
|
# Creates a profile of the noise in a given waveform.
|
||
|
#
|
||
|
# :param wav: a waveform containing noise ONLY, as a numpy array of floats or ints.
|
||
|
# :param sampling_rate: the sampling rate of the audio
|
||
|
# :param window_size: the size of the window the logmmse algorithm operates on. A default value
|
||
|
# will be picked if left as 0.
|
||
|
# :param eta: voice threshold for noise update. While the voice activation detection value is
|
||
|
# below this threshold, the noise profile will be continuously updated throughout the audio.
|
||
|
# Set to 0 to disable updating the noise profile.
|
||
|
# """
|
||
|
# wav, dtype = to_float(wav)
|
||
|
# wav += np.finfo(np.float64).eps
|
||
|
#
|
||
|
# if window_size == 0:
|
||
|
# window_size = int(math.floor(0.02 * sampling_rate))
|
||
|
#
|
||
|
# if window_size % 2 == 1:
|
||
|
# window_size = window_size + 1
|
||
|
#
|
||
|
# perc = 50
|
||
|
# len1 = int(math.floor(window_size * perc / 100))
|
||
|
# len2 = int(window_size - len1)
|
||
|
#
|
||
|
# win = np.hanning(window_size)
|
||
|
# win = win * len2 / np.sum(win)
|
||
|
# n_fft = 2 * window_size
|
||
|
#
|
||
|
# wav_mean = np.zeros(n_fft)
|
||
|
# n_frames = len(wav) // window_size
|
||
|
# for j in range(0, window_size * n_frames, window_size):
|
||
|
# wav_mean += np.absolute(np.fft.fft(win * wav[j:j + window_size], n_fft, axis=0))
|
||
|
# noise_mu2 = (wav_mean / n_frames) ** 2
|
||
|
#
|
||
|
# wav, dtype = to_float(wav)
|
||
|
# wav += np.finfo(np.float64).eps
|
||
|
#
|
||
|
# nframes = int(math.floor(len(wav) / len2) - math.floor(window_size / len2))
|
||
|
# vad = np.zeros(nframes * len2, dtype=np.bool)
|
||
|
#
|
||
|
# aa = 0.98
|
||
|
# mu = 0.98
|
||
|
# ksi_min = 10 ** (-25 / 10)
|
||
|
#
|
||
|
# xk_prev = np.zeros(len1)
|
||
|
# noise_mu2 = noise_mu2
|
||
|
# for k in range(0, nframes * len2, len2):
|
||
|
# insign = win * wav[k:k + window_size]
|
||
|
#
|
||
|
# spec = np.fft.fft(insign, n_fft, axis=0)
|
||
|
# sig = np.absolute(spec)
|
||
|
# sig2 = sig ** 2
|
||
|
#
|
||
|
# gammak = np.minimum(sig2 / noise_mu2, 40)
|
||
|
#
|
||
|
# if xk_prev.all() == 0:
|
||
|
# ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0)
|
||
|
# else:
|
||
|
# ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0)
|
||
|
# ksi = np.maximum(ksi_min, ksi)
|
||
|
#
|
||
|
# log_sigma_k = gammak * ksi / (1 + ksi) - np.log(1 + ksi)
|
||
|
# vad_decision = np.sum(log_sigma_k) / window_size
|
||
|
# if vad_decision < eta:
|
||
|
# noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2
|
||
|
# print(vad_decision)
|
||
|
#
|
||
|
# a = ksi / (1 + ksi)
|
||
|
# vk = a * gammak
|
||
|
# ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8))
|
||
|
# hw = a * np.exp(ei_vk)
|
||
|
# sig = sig * hw
|
||
|
# xk_prev = sig ** 2
|
||
|
#
|
||
|
# vad[k:k + len2] = vad_decision >= eta
|
||
|
#
|
||
|
# vad = np.pad(vad, (0, len(wav) - len(vad)), mode="constant")
|
||
|
# return vad
|
||
|
|
||
|
|
||
|
def to_float(_input):
|
||
|
if _input.dtype == np.float64:
|
||
|
return _input, _input.dtype
|
||
|
elif _input.dtype == np.float32:
|
||
|
return _input.astype(np.float64), _input.dtype
|
||
|
elif _input.dtype == np.uint8:
|
||
|
return (_input - 128) / 128., _input.dtype
|
||
|
elif _input.dtype == np.int16:
|
||
|
return _input / 32768., _input.dtype
|
||
|
elif _input.dtype == np.int32:
|
||
|
return _input / 2147483648., _input.dtype
|
||
|
raise ValueError('Unsupported wave file format')
|
||
|
|
||
|
|
||
|
def from_float(_input, dtype):
|
||
|
if dtype == np.float64:
|
||
|
return _input, np.float64
|
||
|
elif dtype == np.float32:
|
||
|
return _input.astype(np.float32)
|
||
|
elif dtype == np.uint8:
|
||
|
return ((_input * 128) + 128).astype(np.uint8)
|
||
|
elif dtype == np.int16:
|
||
|
return (_input * 32768).astype(np.int16)
|
||
|
elif dtype == np.int32:
|
||
|
print(_input)
|
||
|
return (_input * 2147483648).astype(np.int32)
|
||
|
raise ValueError('Unsupported wave file format')
|