2022-03-03 23:38:12 +08:00
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import abc
|
|
|
|
import math
|
|
|
|
import yaml
|
|
|
|
import torch
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
|
|
|
|
from .option import default_hparas
|
|
|
|
from utils.util import human_format, Timer
|
|
|
|
from utils.load_yaml import HpsYaml
|
|
|
|
|
|
|
|
|
|
|
|
class BaseSolver():
|
|
|
|
'''
|
|
|
|
Prototype Solver for all kinds of tasks
|
|
|
|
Arguments
|
|
|
|
config - yaml-styled config
|
|
|
|
paras - argparse outcome
|
|
|
|
mode - "train"/"test"
|
|
|
|
'''
|
|
|
|
|
|
|
|
def __init__(self, config, paras, mode="train"):
|
|
|
|
# General Settings
|
|
|
|
self.config = config # load from yaml file
|
|
|
|
self.paras = paras # command line args
|
|
|
|
self.mode = mode # 'train' or 'test'
|
|
|
|
for k, v in default_hparas.items():
|
|
|
|
setattr(self, k, v)
|
|
|
|
self.device = torch.device('cuda') if self.paras.gpu and torch.cuda.is_available() \
|
|
|
|
else torch.device('cpu')
|
|
|
|
|
|
|
|
# Name experiment
|
|
|
|
self.exp_name = paras.name
|
|
|
|
if self.exp_name is None:
|
|
|
|
if 'exp_name' in self.config:
|
|
|
|
self.exp_name = self.config.exp_name
|
|
|
|
else:
|
|
|
|
# By default, exp is named after config file
|
|
|
|
self.exp_name = paras.config.split('/')[-1].replace('.yaml', '')
|
|
|
|
if mode == 'train':
|
|
|
|
self.exp_name += '_seed{}'.format(paras.seed)
|
|
|
|
|
|
|
|
|
|
|
|
if mode == 'train':
|
|
|
|
# Filepath setup
|
|
|
|
os.makedirs(paras.ckpdir, exist_ok=True)
|
|
|
|
self.ckpdir = os.path.join(paras.ckpdir, self.exp_name)
|
|
|
|
os.makedirs(self.ckpdir, exist_ok=True)
|
|
|
|
|
|
|
|
# Logger settings
|
|
|
|
self.logdir = os.path.join(paras.logdir, self.exp_name)
|
|
|
|
self.log = SummaryWriter(
|
|
|
|
self.logdir, flush_secs=self.TB_FLUSH_FREQ)
|
|
|
|
self.timer = Timer()
|
|
|
|
|
|
|
|
# Hyper-parameters
|
|
|
|
self.step = 0
|
|
|
|
self.valid_step = config.hparas.valid_step
|
|
|
|
self.max_step = config.hparas.max_step
|
|
|
|
|
|
|
|
self.verbose('Exp. name : {}'.format(self.exp_name))
|
|
|
|
self.verbose('Loading data... large corpus may took a while.')
|
|
|
|
|
|
|
|
# elif mode == 'test':
|
|
|
|
# # Output path
|
|
|
|
# os.makedirs(paras.outdir, exist_ok=True)
|
|
|
|
# self.ckpdir = os.path.join(paras.outdir, self.exp_name)
|
|
|
|
|
|
|
|
# Load training config to get acoustic feat and build model
|
|
|
|
# self.src_config = HpsYaml(config.src.config)
|
|
|
|
# self.paras.load = config.src.ckpt
|
|
|
|
|
|
|
|
# self.verbose('Evaluating result of tr. config @ {}'.format(
|
|
|
|
# config.src.config))
|
|
|
|
|
|
|
|
def backward(self, loss):
|
|
|
|
'''
|
|
|
|
Standard backward step with self.timer and debugger
|
|
|
|
Arguments
|
|
|
|
loss - the loss to perform loss.backward()
|
|
|
|
'''
|
|
|
|
self.timer.set()
|
|
|
|
loss.backward()
|
|
|
|
grad_norm = torch.nn.utils.clip_grad_norm_(
|
|
|
|
self.model.parameters(), self.GRAD_CLIP)
|
|
|
|
if math.isnan(grad_norm):
|
|
|
|
self.verbose('Error : grad norm is NaN @ step '+str(self.step))
|
|
|
|
else:
|
|
|
|
self.optimizer.step()
|
|
|
|
self.timer.cnt('bw')
|
|
|
|
return grad_norm
|
|
|
|
|
|
|
|
def load_ckpt(self):
|
|
|
|
''' Load ckpt if --load option is specified '''
|
2022-05-03 10:24:39 +08:00
|
|
|
print(self.paras)
|
2022-03-03 23:38:12 +08:00
|
|
|
if self.paras.load is not None:
|
|
|
|
if self.paras.warm_start:
|
|
|
|
self.verbose(f"Warm starting model from checkpoint {self.paras.load}.")
|
|
|
|
ckpt = torch.load(
|
|
|
|
self.paras.load, map_location=self.device if self.mode == 'train'
|
|
|
|
else 'cpu')
|
|
|
|
model_dict = ckpt['model']
|
2022-05-03 10:24:39 +08:00
|
|
|
if "ignore_layers" in self.config.model and len(self.config.model.ignore_layers) > 0:
|
2022-03-03 23:38:12 +08:00
|
|
|
model_dict = {k:v for k, v in model_dict.items()
|
|
|
|
if k not in self.config.model.ignore_layers}
|
|
|
|
dummy_dict = self.model.state_dict()
|
|
|
|
dummy_dict.update(model_dict)
|
|
|
|
model_dict = dummy_dict
|
|
|
|
self.model.load_state_dict(model_dict)
|
|
|
|
else:
|
|
|
|
# Load weights
|
|
|
|
ckpt = torch.load(
|
|
|
|
self.paras.load, map_location=self.device if self.mode == 'train'
|
|
|
|
else 'cpu')
|
|
|
|
self.model.load_state_dict(ckpt['model'])
|
|
|
|
|
|
|
|
# Load task-dependent items
|
|
|
|
if self.mode == 'train':
|
|
|
|
self.step = ckpt['global_step']
|
|
|
|
self.optimizer.load_opt_state_dict(ckpt['optimizer'])
|
|
|
|
self.verbose('Load ckpt from {}, restarting at step {}'.format(
|
|
|
|
self.paras.load, self.step))
|
|
|
|
else:
|
|
|
|
for k, v in ckpt.items():
|
|
|
|
if type(v) is float:
|
|
|
|
metric, score = k, v
|
|
|
|
self.model.eval()
|
|
|
|
self.verbose('Evaluation target = {} (recorded {} = {:.2f} %)'.format(
|
|
|
|
self.paras.load, metric, score))
|
|
|
|
|
|
|
|
def verbose(self, msg):
|
|
|
|
''' Verbose function for print information to stdout'''
|
|
|
|
if self.paras.verbose:
|
|
|
|
if type(msg) == list:
|
|
|
|
for m in msg:
|
|
|
|
print('[INFO]', m.ljust(100))
|
|
|
|
else:
|
|
|
|
print('[INFO]', msg.ljust(100))
|
|
|
|
|
|
|
|
def progress(self, msg):
|
|
|
|
''' Verbose function for updating progress on stdout (do not include newline) '''
|
|
|
|
if self.paras.verbose:
|
|
|
|
sys.stdout.write("\033[K") # Clear line
|
|
|
|
print('[{}] {}'.format(human_format(self.step), msg), end='\r')
|
|
|
|
|
|
|
|
def write_log(self, log_name, log_dict):
|
|
|
|
'''
|
|
|
|
Write log to TensorBoard
|
|
|
|
log_name - <str> Name of tensorboard variable
|
|
|
|
log_value - <dict>/<array> Value of variable (e.g. dict of losses), passed if value = None
|
|
|
|
'''
|
|
|
|
if type(log_dict) is dict:
|
|
|
|
log_dict = {key: val for key, val in log_dict.items() if (
|
|
|
|
val is not None and not math.isnan(val))}
|
|
|
|
if log_dict is None:
|
|
|
|
pass
|
|
|
|
elif len(log_dict) > 0:
|
|
|
|
if 'align' in log_name or 'spec' in log_name:
|
|
|
|
img, form = log_dict
|
|
|
|
self.log.add_image(
|
|
|
|
log_name, img, global_step=self.step, dataformats=form)
|
|
|
|
elif 'text' in log_name or 'hyp' in log_name:
|
|
|
|
self.log.add_text(log_name, log_dict, self.step)
|
|
|
|
else:
|
|
|
|
self.log.add_scalars(log_name, log_dict, self.step)
|
|
|
|
|
|
|
|
def save_checkpoint(self, f_name, metric, score, show_msg=True):
|
|
|
|
''''
|
|
|
|
Ckpt saver
|
|
|
|
f_name - <str> the name of ckpt file (w/o prefix) to store, overwrite if existed
|
|
|
|
score - <float> The value of metric used to evaluate model
|
|
|
|
'''
|
|
|
|
ckpt_path = os.path.join(self.ckpdir, f_name)
|
|
|
|
full_dict = {
|
|
|
|
"model": self.model.state_dict(),
|
|
|
|
"optimizer": self.optimizer.get_opt_state_dict(),
|
|
|
|
"global_step": self.step,
|
|
|
|
metric: score
|
|
|
|
}
|
|
|
|
|
|
|
|
torch.save(full_dict, ckpt_path)
|
|
|
|
if show_msg:
|
|
|
|
self.verbose("Saved checkpoint (step = {}, {} = {:.2f}) and status @ {}".
|
|
|
|
format(human_format(self.step), metric, score, ckpt_path))
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------- Abtract Methods ------------------------------------------ #
|
|
|
|
@abc.abstractmethod
|
|
|
|
def load_data(self):
|
|
|
|
'''
|
|
|
|
Called by main to load all data
|
|
|
|
After this call, data related attributes should be setup (e.g. self.tr_set, self.dev_set)
|
|
|
|
No return value
|
|
|
|
'''
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
@abc.abstractmethod
|
|
|
|
def set_model(self):
|
|
|
|
'''
|
|
|
|
Called by main to set models
|
|
|
|
After this call, model related attributes should be setup (e.g. self.l2_loss)
|
|
|
|
The followings MUST be setup
|
|
|
|
- self.model (torch.nn.Module)
|
|
|
|
- self.optimizer (src.Optimizer),
|
|
|
|
init. w/ self.optimizer = src.Optimizer(self.model.parameters(),**self.config['hparas'])
|
|
|
|
Loading pre-trained model should also be performed here
|
|
|
|
No return value
|
|
|
|
'''
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
@abc.abstractmethod
|
|
|
|
def exec(self):
|
|
|
|
'''
|
|
|
|
Called by main to execute training/inference
|
|
|
|
'''
|
|
|
|
raise NotImplementedError
|