mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2024-03-22 13:10:55 +08:00
349 lines
18 KiB
Python
349 lines
18 KiB
Python
import sys
|
|
import traceback
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from core import imagelib
|
|
from core.cv2ex import *
|
|
from core.interact import interact as io
|
|
from facelib import FaceType, LandmarksProcessor
|
|
|
|
is_windows = sys.platform[0:3] == 'win'
|
|
xseg_input_size = 256
|
|
|
|
def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|
face_enhancer_func,
|
|
xseg_256_extract_func,
|
|
cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
|
|
|
|
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
|
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
|
|
|
input_size = predictor_input_shape[0]
|
|
mask_subres_size = input_size*4
|
|
output_size = input_size
|
|
if cfg.super_resolution_power != 0:
|
|
output_size *= 4
|
|
|
|
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type)
|
|
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale)
|
|
|
|
if mask_subres_size == output_size:
|
|
face_mask_output_mat = face_output_mat
|
|
else:
|
|
face_mask_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, mask_subres_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale)
|
|
|
|
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
|
dst_face_bgr = np.clip(dst_face_bgr, 0, 1)
|
|
|
|
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
|
dst_face_mask_a_0 = np.clip(dst_face_mask_a_0, 0, 1)
|
|
|
|
predictor_input_bgr = cv2.resize (dst_face_bgr, (input_size,input_size) )
|
|
|
|
predicted = predictor_func (predictor_input_bgr)
|
|
prd_face_bgr = np.clip (predicted[0], 0, 1.0)
|
|
prd_face_mask_a_0 = np.clip (predicted[1], 0, 1.0)
|
|
prd_face_dst_mask_a_0 = np.clip (predicted[2], 0, 1.0)
|
|
|
|
if cfg.super_resolution_power != 0:
|
|
prd_face_bgr_enhanced = face_enhancer_func(prd_face_bgr, is_tanh=True, preserve_size=False)
|
|
mod = cfg.super_resolution_power / 100.0
|
|
prd_face_bgr = cv2.resize(prd_face_bgr, (output_size,output_size))*(1.0-mod) + prd_face_bgr_enhanced*mod
|
|
prd_face_bgr = np.clip(prd_face_bgr, 0, 1)
|
|
|
|
if cfg.super_resolution_power != 0:
|
|
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), interpolation=cv2.INTER_CUBIC)
|
|
prd_face_dst_mask_a_0 = cv2.resize (prd_face_dst_mask_a_0, (output_size, output_size), interpolation=cv2.INTER_CUBIC)
|
|
|
|
if cfg.mask_mode == 0: #full
|
|
wrk_face_mask_a_0 = np.ones_like(dst_face_mask_a_0)
|
|
elif cfg.mask_mode == 1: #dst
|
|
wrk_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), interpolation=cv2.INTER_CUBIC)
|
|
elif cfg.mask_mode == 2: #learned-prd
|
|
wrk_face_mask_a_0 = prd_face_mask_a_0
|
|
elif cfg.mask_mode == 3: #learned-dst
|
|
wrk_face_mask_a_0 = prd_face_dst_mask_a_0
|
|
elif cfg.mask_mode == 4: #learned-prd*learned-dst
|
|
wrk_face_mask_a_0 = prd_face_mask_a_0*prd_face_dst_mask_a_0
|
|
elif cfg.mask_mode == 5: #learned-prd+learned-dst
|
|
wrk_face_mask_a_0 = np.clip( prd_face_mask_a_0+prd_face_dst_mask_a_0, 0, 1)
|
|
elif cfg.mask_mode >= 6 and cfg.mask_mode <= 9: #XSeg modes
|
|
if cfg.mask_mode == 6 or cfg.mask_mode == 8 or cfg.mask_mode == 9:
|
|
# obtain XSeg-prd
|
|
prd_face_xseg_bgr = cv2.resize (prd_face_bgr, (xseg_input_size,)*2, interpolation=cv2.INTER_CUBIC)
|
|
prd_face_xseg_mask = xseg_256_extract_func(prd_face_xseg_bgr)
|
|
X_prd_face_mask_a_0 = cv2.resize ( prd_face_xseg_mask, (output_size, output_size), interpolation=cv2.INTER_CUBIC)
|
|
|
|
if cfg.mask_mode >= 7 and cfg.mask_mode <= 9:
|
|
# obtain XSeg-dst
|
|
xseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, xseg_input_size, face_type=cfg.face_type)
|
|
dst_face_xseg_bgr = cv2.warpAffine(img_bgr, xseg_mat, (xseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
|
dst_face_xseg_mask = xseg_256_extract_func(dst_face_xseg_bgr)
|
|
X_dst_face_mask_a_0 = cv2.resize (dst_face_xseg_mask, (output_size,output_size), interpolation=cv2.INTER_CUBIC)
|
|
|
|
if cfg.mask_mode == 6: #'XSeg-prd'
|
|
wrk_face_mask_a_0 = X_prd_face_mask_a_0
|
|
elif cfg.mask_mode == 7: #'XSeg-dst'
|
|
wrk_face_mask_a_0 = X_dst_face_mask_a_0
|
|
elif cfg.mask_mode == 8: #'XSeg-prd*XSeg-dst'
|
|
wrk_face_mask_a_0 = X_prd_face_mask_a_0 * X_dst_face_mask_a_0
|
|
elif cfg.mask_mode == 9: #learned-prd*learned-dst*XSeg-prd*XSeg-dst
|
|
wrk_face_mask_a_0 = prd_face_mask_a_0 * prd_face_dst_mask_a_0 * X_prd_face_mask_a_0 * X_dst_face_mask_a_0
|
|
|
|
wrk_face_mask_a_0[ wrk_face_mask_a_0 < (1.0/255.0) ] = 0.0 # get rid of noise
|
|
|
|
# resize to mask_subres_size
|
|
if wrk_face_mask_a_0.shape[0] != mask_subres_size:
|
|
wrk_face_mask_a_0 = cv2.resize (wrk_face_mask_a_0, (mask_subres_size, mask_subres_size), interpolation=cv2.INTER_CUBIC)
|
|
|
|
# process mask in local predicted space
|
|
if 'raw' not in cfg.mode:
|
|
# add zero pad
|
|
wrk_face_mask_a_0 = np.pad (wrk_face_mask_a_0, input_size)
|
|
|
|
ero = cfg.erode_mask_modifier
|
|
blur = cfg.blur_mask_modifier
|
|
|
|
if ero > 0:
|
|
wrk_face_mask_a_0 = cv2.erode(wrk_face_mask_a_0, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
|
elif ero < 0:
|
|
wrk_face_mask_a_0 = cv2.dilate(wrk_face_mask_a_0, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
|
|
|
# clip eroded/dilated mask in actual predict area
|
|
# pad with half blur size in order to accuratelly fade to zero at the boundary
|
|
clip_size = input_size + blur // 2
|
|
|
|
wrk_face_mask_a_0[:clip_size,:] = 0
|
|
wrk_face_mask_a_0[-clip_size:,:] = 0
|
|
wrk_face_mask_a_0[:,:clip_size] = 0
|
|
wrk_face_mask_a_0[:,-clip_size:] = 0
|
|
|
|
if blur > 0:
|
|
blur = blur + (1-blur % 2)
|
|
wrk_face_mask_a_0 = cv2.GaussianBlur(wrk_face_mask_a_0, (blur, blur) , 0)
|
|
|
|
wrk_face_mask_a_0 = wrk_face_mask_a_0[input_size:-input_size,input_size:-input_size]
|
|
|
|
wrk_face_mask_a_0 = np.clip(wrk_face_mask_a_0, 0, 1)
|
|
|
|
img_face_mask_a = cv2.warpAffine( wrk_face_mask_a_0, face_mask_output_mat, img_size, np.zeros(img_bgr.shape[0:2], dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )[...,None]
|
|
img_face_mask_a = np.clip (img_face_mask_a, 0.0, 1.0)
|
|
img_face_mask_a [ img_face_mask_a < (1.0/255.0) ] = 0.0 # get rid of noise
|
|
|
|
if wrk_face_mask_a_0.shape[0] != output_size:
|
|
wrk_face_mask_a_0 = cv2.resize (wrk_face_mask_a_0, (output_size,output_size), interpolation=cv2.INTER_CUBIC)
|
|
|
|
wrk_face_mask_a = wrk_face_mask_a_0[...,None]
|
|
|
|
out_img = None
|
|
out_merging_mask_a = None
|
|
if cfg.mode == 'original':
|
|
return img_bgr, img_face_mask_a
|
|
|
|
elif 'raw' in cfg.mode:
|
|
if cfg.mode == 'raw-rgb':
|
|
out_img_face = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)
|
|
out_img_face_mask = cv2.warpAffine( np.ones_like(prd_face_bgr), face_output_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)
|
|
out_img = img_bgr*(1-out_img_face_mask) + out_img_face*out_img_face_mask
|
|
out_merging_mask_a = img_face_mask_a
|
|
elif cfg.mode == 'raw-predict':
|
|
out_img = prd_face_bgr
|
|
out_merging_mask_a = wrk_face_mask_a
|
|
else:
|
|
raise ValueError(f"undefined raw type {cfg.mode}")
|
|
|
|
out_img = np.clip (out_img, 0.0, 1.0 )
|
|
else:
|
|
|
|
# Process if the mask meets minimum size
|
|
maxregion = np.argwhere( img_face_mask_a >= 0.1 )
|
|
if maxregion.size != 0:
|
|
miny,minx = maxregion.min(axis=0)[:2]
|
|
maxy,maxx = maxregion.max(axis=0)[:2]
|
|
lenx = maxx - minx
|
|
leny = maxy - miny
|
|
if min(lenx,leny) >= 4:
|
|
wrk_face_mask_area_a = wrk_face_mask_a.copy()
|
|
wrk_face_mask_area_a[wrk_face_mask_area_a>0] = 1.0
|
|
|
|
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
|
|
if cfg.color_transfer_mode == 1: #rct
|
|
prd_face_bgr = imagelib.reinhard_color_transfer (prd_face_bgr, dst_face_bgr, target_mask=wrk_face_mask_area_a, source_mask=wrk_face_mask_area_a)
|
|
elif cfg.color_transfer_mode == 2: #lct
|
|
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 3: #mkl
|
|
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 4: #mkl-m
|
|
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
|
elif cfg.color_transfer_mode == 5: #idt
|
|
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 6: #idt-m
|
|
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
|
elif cfg.color_transfer_mode == 7: #sot-m
|
|
prd_face_bgr = imagelib.color_transfer_sot (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a, steps=10, batch_size=30)
|
|
prd_face_bgr = np.clip (prd_face_bgr, 0.0, 1.0)
|
|
elif cfg.color_transfer_mode == 8: #mix-m
|
|
prd_face_bgr = imagelib.color_transfer_mix (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
|
|
|
if cfg.mode == 'hist-match':
|
|
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
|
|
|
if cfg.masked_hist_match:
|
|
hist_mask_a *= wrk_face_mask_area_a
|
|
|
|
white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
|
|
|
hist_match_1 = prd_face_bgr*hist_mask_a + white
|
|
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
|
|
|
|
hist_match_2 = dst_face_bgr*hist_mask_a + white
|
|
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
|
|
|
|
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, cfg.hist_match_threshold ).astype(dtype=np.float32)
|
|
|
|
if 'seamless' in cfg.mode:
|
|
#mask used for cv2.seamlessClone
|
|
img_face_seamless_mask_a = None
|
|
for i in range(1,10):
|
|
a = img_face_mask_a > i / 10.0
|
|
if len(np.argwhere(a)) == 0:
|
|
continue
|
|
img_face_seamless_mask_a = img_face_mask_a.copy()
|
|
img_face_seamless_mask_a[a] = 1.0
|
|
img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
|
|
break
|
|
|
|
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
|
|
out_img = np.clip(out_img, 0.0, 1.0)
|
|
|
|
if 'seamless' in cfg.mode:
|
|
try:
|
|
#calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
|
|
l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
|
|
s_maskx, s_masky = int(l+w/2), int(t+h/2)
|
|
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), img_bgr_uint8, (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
|
|
out_img = out_img.astype(dtype=np.float32) / 255.0
|
|
except Exception as e:
|
|
#seamlessClone may fail in some cases
|
|
e_str = traceback.format_exc()
|
|
|
|
if 'MemoryError' in e_str:
|
|
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
|
|
else:
|
|
print ("Seamless fail: " + e_str)
|
|
|
|
cfg_mp = cfg.motion_blur_power / 100.0
|
|
|
|
out_img = img_bgr*(1-img_face_mask_a) + (out_img*img_face_mask_a)
|
|
|
|
if ('seamless' in cfg.mode and cfg.color_transfer_mode != 0) or \
|
|
cfg.mode == 'seamless-hist-match' or \
|
|
cfg_mp != 0 or \
|
|
cfg.blursharpen_amount != 0 or \
|
|
cfg.image_denoise_power != 0 or \
|
|
cfg.bicubic_degrade_power != 0:
|
|
|
|
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
|
|
|
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
|
|
if cfg.color_transfer_mode == 1:
|
|
out_face_bgr = imagelib.reinhard_color_transfer (out_face_bgr, dst_face_bgr, target_mask=wrk_face_mask_area_a, source_mask=wrk_face_mask_area_a)
|
|
elif cfg.color_transfer_mode == 2: #lct
|
|
out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 3: #mkl
|
|
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 4: #mkl-m
|
|
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
|
elif cfg.color_transfer_mode == 5: #idt
|
|
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr, dst_face_bgr)
|
|
elif cfg.color_transfer_mode == 6: #idt-m
|
|
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
|
elif cfg.color_transfer_mode == 7: #sot-m
|
|
out_face_bgr = imagelib.color_transfer_sot (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a, steps=10, batch_size=30)
|
|
out_face_bgr = np.clip (out_face_bgr, 0.0, 1.0)
|
|
elif cfg.color_transfer_mode == 8: #mix-m
|
|
out_face_bgr = imagelib.color_transfer_mix (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
|
|
|
|
if cfg.mode == 'seamless-hist-match':
|
|
out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
|
|
|
|
if cfg_mp != 0:
|
|
k_size = int(frame_info.motion_power*cfg_mp)
|
|
if k_size >= 1:
|
|
k_size = np.clip (k_size+1, 2, 50)
|
|
if cfg.super_resolution_power != 0:
|
|
k_size *= 2
|
|
out_face_bgr = imagelib.LinearMotionBlur (out_face_bgr, k_size , frame_info.motion_deg)
|
|
|
|
if cfg.blursharpen_amount != 0:
|
|
out_face_bgr = imagelib.blursharpen ( out_face_bgr, cfg.sharpen_mode, 3, cfg.blursharpen_amount)
|
|
|
|
if cfg.image_denoise_power != 0:
|
|
n = cfg.image_denoise_power
|
|
while n > 0:
|
|
img_bgr_denoised = cv2.medianBlur(img_bgr, 5)
|
|
if int(n / 100) != 0:
|
|
img_bgr = img_bgr_denoised
|
|
else:
|
|
pass_power = (n % 100) / 100.0
|
|
img_bgr = img_bgr*(1.0-pass_power)+img_bgr_denoised*pass_power
|
|
n = max(n-10,0)
|
|
|
|
if cfg.bicubic_degrade_power != 0:
|
|
p = 1.0 - cfg.bicubic_degrade_power / 101.0
|
|
img_bgr_downscaled = cv2.resize (img_bgr, ( int(img_size[0]*p), int(img_size[1]*p ) ), interpolation=cv2.INTER_CUBIC)
|
|
img_bgr = cv2.resize (img_bgr_downscaled, img_size, interpolation=cv2.INTER_CUBIC)
|
|
|
|
new_out = cv2.warpAffine( out_face_bgr, face_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
|
|
|
|
out_img = np.clip( img_bgr*(1-img_face_mask_a) + (new_out*img_face_mask_a) , 0, 1.0 )
|
|
|
|
if cfg.color_degrade_power != 0:
|
|
out_img_reduced = imagelib.reduce_colors(out_img, 256)
|
|
if cfg.color_degrade_power == 100:
|
|
out_img = out_img_reduced
|
|
else:
|
|
alpha = cfg.color_degrade_power / 100.0
|
|
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
|
|
out_merging_mask_a = img_face_mask_a
|
|
|
|
if out_img is None:
|
|
out_img = img_bgr.copy()
|
|
|
|
return out_img, out_merging_mask_a
|
|
|
|
|
|
def MergeMasked (predictor_func,
|
|
predictor_input_shape,
|
|
face_enhancer_func,
|
|
xseg_256_extract_func,
|
|
cfg,
|
|
frame_info):
|
|
img_bgr_uint8 = cv2_imread(frame_info.filepath)
|
|
img_bgr_uint8 = imagelib.normalize_channels (img_bgr_uint8, 3)
|
|
img_bgr = img_bgr_uint8.astype(np.float32) / 255.0
|
|
|
|
outs = []
|
|
for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
|
|
out_img, out_img_merging_mask = MergeMaskedFace (predictor_func, predictor_input_shape, face_enhancer_func, xseg_256_extract_func, cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
|
|
outs += [ (out_img, out_img_merging_mask) ]
|
|
|
|
#Combining multiple face outputs
|
|
final_img = None
|
|
final_mask = None
|
|
for img, merging_mask in outs:
|
|
h,w,c = img.shape
|
|
|
|
if final_img is None:
|
|
final_img = img
|
|
final_mask = merging_mask
|
|
else:
|
|
final_img = final_img*(1-merging_mask) + img*merging_mask
|
|
final_mask = np.clip (final_mask + merging_mask, 0, 1 )
|
|
|
|
final_img = np.concatenate ( [final_img, final_mask], -1)
|
|
|
|
return (final_img*255).astype(np.uint8)
|