update optimizers

This commit is contained in:
iperov 2021-09-29 22:06:46 +04:00
parent 9e0079c6a0
commit c6d0c547b7
2 changed files with 9 additions and 8 deletions

View File

@ -1,9 +1,11 @@
from tensorflow.python.ops import control_flow_ops, state_ops
import numpy as np
from core.leras import nn
from tensorflow.python.ops import control_flow_ops, state_ops
tf = nn.tf
class AdaBelief(nn.OptimizerBase):
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, lr_dropout=1.0, lr_cos=0, epsilon=1e-7, clipnorm=0.0, name=None, **kwargs):
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, lr_dropout=1.0, lr_cos=0, clipnorm=0.0, name=None, **kwargs):
super().__init__(name=name)
if name is None:
@ -15,7 +17,6 @@ class AdaBelief(nn.OptimizerBase):
self.lr_dropout = lr_dropout
self.lr_cos = lr_cos
self.clipnorm = clipnorm
self.epsilon = epsilon
with tf.device('/CPU:0') :
with tf.variable_scope(self.name):
@ -66,7 +67,7 @@ class AdaBelief(nn.OptimizerBase):
if self.lr_cos != 0:
lr *= (tf.cos( tf.cast(self.iterations, g.dtype) * (2*3.1415926535/ float(self.lr_cos) ) ) + 1.0) / 2.0
v_diff = - lr * m_t / (tf.sqrt(v_t) + self.epsilon)
v_diff = - lr * m_t / (tf.sqrt(v_t) + np.finfo( m_t.dtype.as_numpy_dtype ).resolution )
if self.lr_dropout != 1.0:
lr_rnd = self.lr_rnds_dict[v.name]
v_diff *= lr_rnd
@ -77,4 +78,4 @@ class AdaBelief(nn.OptimizerBase):
updates.append (state_ops.assign(v, new_v))
return control_flow_ops.group ( *updates, name=self.name+'_updates')
nn.AdaBelief = AdaBelief
nn.AdaBelief = AdaBelief

View File

@ -1,9 +1,10 @@
import numpy as np
from tensorflow.python.ops import control_flow_ops, state_ops
from core.leras import nn
tf = nn.tf
class RMSprop(nn.OptimizerBase):
def __init__(self, lr=0.001, rho=0.9, lr_dropout=1.0, epsilon=1e-7, clipnorm=0.0, name=None, **kwargs):
def __init__(self, lr=0.001, rho=0.9, lr_dropout=1.0, clipnorm=0.0, name=None, **kwargs):
super().__init__(name=name)
if name is None:
@ -12,7 +13,6 @@ class RMSprop(nn.OptimizerBase):
self.lr_dropout = lr_dropout
self.lr = lr
self.rho = rho
self.epsilon = epsilon
self.clipnorm = clipnorm
@ -59,7 +59,7 @@ class RMSprop(nn.OptimizerBase):
lr = tf.constant(self.lr, g.dtype)
v_diff = - lr * g / (tf.sqrt(new_a) + self.epsilon)
v_diff = - lr * g / (tf.sqrt(new_a) + np.finfo( m_t.dtype.as_numpy_dtype ).resolution )
if self.lr_dropout != 1.0:
lr_rnd = self.lr_rnds_dict[v.name]
v_diff *= lr_rnd