xseg sample generator: additional sample augmentation

This commit is contained in:
iperov 2021-04-12 16:52:39 +04:00
parent d676a365f7
commit bee8628d77

View File

@ -6,7 +6,7 @@ from enum import IntEnum
import cv2
import numpy as np
from pathlib import Path
from core import imagelib, mplib, pathex
from core.imagelib import sd
from core.cv2ex import *
@ -31,7 +31,7 @@ class SampleGeneratorFaceXSeg(SampleGeneratorBase):
if len(seg_sample_idxs) == 0:
raise Exception(f"No segmented faces found.")
else:
io.log_info(f"Using {len(seg_sample_idxs)} xseg labeled samples.")
io.log_info(f"Using {len(seg_sample_idxs)} xseg labeled samples.")
else:
io.log_info(f"Using {len(seg_sample_idxs)} segmented samples.")
@ -40,11 +40,11 @@ class SampleGeneratorFaceXSeg(SampleGeneratorBase):
else:
self.generators_count = max(1, generators_count)
args = (samples, seg_sample_idxs, resolution, face_type, data_format)
if self.debug:
self.generators = [ThisThreadGenerator ( self.batch_func, (samples, seg_sample_idxs, resolution, face_type, data_format) )]
self.generators = [ThisThreadGenerator ( self.batch_func, args )]
else:
self.generators = [SubprocessGenerator ( self.batch_func, (samples, seg_sample_idxs, resolution, face_type, data_format), start_now=False ) \
for i in range(self.generators_count) ]
self.generators = [SubprocessGenerator ( self.batch_func, args, start_now=False ) for i in range(self.generators_count) ]
SubprocessGenerator.start_in_parallel( self.generators )
@ -84,11 +84,11 @@ class SampleGeneratorFaceXSeg(SampleGeneratorBase):
def gen_img_mask(sample):
img = sample.load_bgr()
h,w,c = img.shape
if sample.seg_ie_polys.has_polys():
mask = np.zeros ((h,w,1), dtype=np.float32)
sample.seg_ie_polys.overlay_mask(mask)
elif sample.has_xseg_mask():
elif sample.has_xseg_mask():
mask = sample.get_xseg_mask()
mask[mask < 0.5] = 0.0
mask[mask >= 0.5] = 1.0
@ -122,7 +122,6 @@ class SampleGeneratorFaceXSeg(SampleGeneratorBase):
img, mask = gen_img_mask(sample)
if np.random.randint(2) == 0:
if len(bg_shuffle_idxs) == 0:
bg_shuffle_idxs = seg_sample_idxs.copy()
np.random.shuffle(bg_shuffle_idxs)
@ -133,6 +132,11 @@ class SampleGeneratorFaceXSeg(SampleGeneratorBase):
bg_wp = imagelib.gen_warp_params(resolution, True, rotation_range=[-180,180], scale_range=[-0.10, 0.10], tx_range=[-0.10, 0.10], ty_range=[-0.10, 0.10] )
bg_img = imagelib.warp_by_params (bg_wp, bg_img, can_warp=False, can_transform=True, can_flip=True, border_replicate=True)
bg_mask = imagelib.warp_by_params (bg_wp, bg_mask, can_warp=False, can_transform=True, can_flip=True, border_replicate=False)
bg_img = bg_img*(1-bg_mask)
if np.random.randint(2) == 0:
bg_img = imagelib.apply_random_hsv_shift(bg_img)
else:
bg_img = imagelib.apply_random_rgb_levels(bg_img)
c_mask = 1.0 - (1-bg_mask) * (1-mask)
rnd = np.random.uniform()
@ -152,16 +156,22 @@ class SampleGeneratorFaceXSeg(SampleGeneratorBase):
else:
img = imagelib.apply_random_rgb_levels(img, mask=sd.random_circle_faded ([resolution,resolution]))
if np.random.randint(2) == 0:
# random face flare
krn = np.random.randint( resolution//4, resolution )
krn = krn - krn % 2 + 1
img = img + cv2.GaussianBlur(img*mask, (krn,krn), 0)
img = imagelib.apply_random_motion_blur( img, motion_blur_chance, motion_blur_mb_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
img = imagelib.apply_random_gaussian_blur( img, gaussian_blur_chance, gaussian_blur_kernel_max_size, mask=sd.random_circle_faded ([resolution,resolution]))
if np.random.randint(2) == 0:
img = imagelib.apply_random_nearest_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution]))
else:
img = imagelib.apply_random_bilinear_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution]))
img = np.clip(img, 0, 1)
img = imagelib.apply_random_jpeg_compress( img, random_jpeg_compress_chance, mask=sd.random_circle_faded ([resolution,resolution]))
if data_format == "NCHW":
img = np.transpose(img, (2,0,1) )
mask = np.transpose(mask, (2,0,1) )
@ -229,4 +239,48 @@ class SegmentedSampleFilterSubprocessor(Subprocessor):
if self.count_xseg_mask:
return idx, self.samples[idx].has_xseg_mask()
else:
return idx, self.samples[idx].seg_ie_polys.get_pts_count() != 0
return idx, self.samples[idx].seg_ie_polys.get_pts_count() != 0
"""
bg_path = None
for path in paths:
bg_path = Path(path) / 'backgrounds'
if bg_path.exists():
break
if bg_path is None:
io.log_info(f'Random backgrounds will not be used. Place no face jpg images to aligned\backgrounds folder. ')
bg_pathes = None
else:
bg_pathes = pathex.get_image_paths(bg_path, image_extensions=['.jpg'], return_Path_class=True)
io.log_info(f'Using {len(bg_pathes)} random backgrounds from {bg_path}')
if bg_pathes is not None:
bg_path = bg_pathes[ np.random.randint(len(bg_pathes)) ]
bg_img = cv2_imread(bg_path)
if bg_img is not None:
bg_img = bg_img.astype(np.float32) / 255.0
bg_img = imagelib.normalize_channels(bg_img, 3)
bg_img = imagelib.random_crop(bg_img, resolution, resolution)
bg_img = cv2.resize(bg_img, (resolution, resolution), interpolation=cv2.INTER_LINEAR)
if np.random.randint(2) == 0:
bg_img = imagelib.apply_random_hsv_shift(bg_img)
else:
bg_img = imagelib.apply_random_rgb_levels(bg_img)
bg_wp = imagelib.gen_warp_params(resolution, True, rotation_range=[-180,180], scale_range=[0,0], tx_range=[0,0], ty_range=[0,0])
bg_img = imagelib.warp_by_params (bg_wp, bg_img, can_warp=False, can_transform=True, can_flip=True, border_replicate=True)
bg = img*(1-mask)
fg = img*mask
c_mask = sd.random_circle_faded ([resolution,resolution])
bg = ( bg_img*c_mask + bg*(1-c_mask) )*(1-mask)
img = fg+bg
else:
"""