mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2024-03-22 13:10:55 +08:00
DockerFile for Mac users to run DeepfaceLab with CPU Mode (#95)
* fix localization nullpointer exception * fix devicelib error line:61,remove e * support create docker from cpu dockerfile * support preview or not when train(resolve cannot connect to X server)
This commit is contained in:
parent
46bda1d683
commit
a8694b73f0
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -12,4 +12,6 @@
|
|||
!mathlib
|
||||
!models
|
||||
!nnlib
|
||||
!utils
|
||||
!utils
|
||||
!Dockerfile*
|
||||
!*.sh
|
132
DockerCPU.md
Normal file
132
DockerCPU.md
Normal file
|
@ -0,0 +1,132 @@
|
|||
# For Mac Users
|
||||
If you just have a **MacBook**.DeepFaceLab **GPU** mode does not works. However,it can also works with **CPU** mode.Follow the Steps below will help you build the **DRE** (DeepFaceLab Runtime Environment) Easier.
|
||||
|
||||
### 1. Open a new terminal and Clone DeepFaceLab with git
|
||||
```
|
||||
$ git git@github.com:iperov/DeepFaceLab.git
|
||||
```
|
||||
|
||||
### 2. Change the directory to DeepFaceLab
|
||||
```
|
||||
$ cd DeepFaceLab
|
||||
```
|
||||
|
||||
### 3. Install Docker
|
||||
|
||||
[Docker Desktop for Mac](https://hub.docker.com/editions/community/docker-ce-desktop-mac)
|
||||
|
||||
### 4. Build Docker Image For DeepFaceLab
|
||||
|
||||
```
|
||||
$ docker build -t deepfacelab-cpu -f Dockerfile.cpu .
|
||||
```
|
||||
|
||||
### 5. Mount DeepFaceLab volume and Run it
|
||||
|
||||
```
|
||||
$ docker run -p 8888:8888 --hostname deepfacelab-cpu --name deepfacelab-cpu -v $PWD:/notebooks deepfacelab-cpu
|
||||
```
|
||||
|
||||
PS: Because your current directory is `DeepFaceLab`,so `-v $PWD:/notebooks` means Mount `DeepFaceLab` volume to `notebooks` in **Docker**
|
||||
|
||||
And then you will see the log below:
|
||||
|
||||
```
|
||||
The Jupyter Notebook is running at:
|
||||
http://(deepfacelab-cpu or 127.0.0.1):8888/?token=your token
|
||||
```
|
||||
|
||||
### 6. Open a new terminal to run DeepFaceLab in /notebooks
|
||||
|
||||
```
|
||||
$ docker exec -it deepfacelab-cpu bash
|
||||
$ ls -A
|
||||
```
|
||||
|
||||
### 7. Use jupyter in deepfacelab-cpu bash
|
||||
|
||||
```
|
||||
$ jupyter notebook list
|
||||
```
|
||||
or just open it on your browser `http://127.0.0.1:8888/?token=your_token`
|
||||
|
||||
PS: You can run python with jupyter.However,we just run our code in bash.It's simpler and clearer.Now the **DRE** (DeepFaceLab Runtime Environment) almost builded.
|
||||
|
||||
### 8. Stop or Kill Docker Container
|
||||
|
||||
```
|
||||
$ docker stop deepfacelab-cpu
|
||||
$ docker kill deepfacelab-cpu
|
||||
```
|
||||
|
||||
### 9. Start Docker Container
|
||||
|
||||
```
|
||||
# start docker container
|
||||
$ docker start deepfacelab-cpu
|
||||
# open bash to run deepfacelab
|
||||
$ docker exec -it deepfacelab-cpu bash
|
||||
```
|
||||
|
||||
PS: `STEP 8` or `STEP 9` just show you the way to stop and start **DRE**.
|
||||
|
||||
### 10. enjoy it
|
||||
|
||||
```
|
||||
# make sure you current directory is `/notebooks`
|
||||
$ pwd
|
||||
# make sure all `DeepFaceLab` code is in current path `/notebooks`
|
||||
$ ls -a
|
||||
# read and write permission
|
||||
$ chmod +x cpu.sh
|
||||
# run `DeepFaceLab`
|
||||
$ ./cpu.sh
|
||||
```
|
||||
|
||||
### Details with `DeepFaceLab`
|
||||
|
||||
#### 1. Concepts
|
||||
|
||||
![SRC](doc/DF_Cage_0.jpg)
|
||||
|
||||
In our Case,**Cage**'s Face is **SRC Face**,and **Trump**'s Face is **DST Face**.and finally we get the **Result** below.
|
||||
|
||||
![Result](doc/merged-face.jpg)
|
||||
|
||||
So,before you run `./cpu.sh`.You should be aware of this.
|
||||
|
||||
#### 2. Use MTCNN(mt) to extract faces
|
||||
Do not use DLIB extractor in CPU mode
|
||||
|
||||
#### 3. Best practice for SORT
|
||||
1) delete first unsorted aligned groups of images what you can to delete.
|
||||
|
||||
2) use `hist`
|
||||
|
||||
#### 4. Use `H64 model` to train and convert
|
||||
Only H64 model reasonable to train on home CPU.You can choice other model like **H128 (3GB+)** | **DF (5GB+)** and so on ,it depends entirely on your CPU performance.
|
||||
|
||||
#### 5. execute the script below one by one
|
||||
|
||||
```
|
||||
root@deepfacelab-cpu:/notebooks# ./cpu.sh
|
||||
1) clear workspace 7) data_dst sort by hist
|
||||
2) extract PNG from video data_src 8) train
|
||||
3) data_src extract faces 9) convert
|
||||
4) data_src sort 10) converted to mp4
|
||||
5) extract PNG from video data_dst 11) quit
|
||||
6) data_dst extract faces
|
||||
Please enter your choice:
|
||||
```
|
||||
|
||||
#### 6. Put all videos in `workspace` directory
|
||||
```
|
||||
.
|
||||
├── data_dst
|
||||
├── data_src
|
||||
├── dst.mp4
|
||||
├── model
|
||||
└── src.mp4
|
||||
|
||||
3 directories, 2 files
|
||||
```
|
17
Dockerfile.cpu
Normal file
17
Dockerfile.cpu
Normal file
|
@ -0,0 +1,17 @@
|
|||
FROM tensorflow/tensorflow:latest-py3
|
||||
|
||||
RUN apt-get update -qq -y \
|
||||
&& apt-get install -y libsm6 libxrender1 libxext-dev python3-tk\
|
||||
&& apt-get install -y ffmpeg \
|
||||
&& apt-get install -y wget \
|
||||
&& apt-get install -y vim \
|
||||
&& apt-get install -y git \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
COPY requirements-cpu-docker.txt /opt/
|
||||
RUN pip3 install cmake
|
||||
RUN pip3 --no-cache-dir install -r /opt/requirements-cpu-docker.txt && rm /opt/requirements-cpu-docker.txt
|
||||
|
||||
WORKDIR "/notebooks"
|
||||
CMD ["/run_jupyter.sh", "--allow-root"]
|
|
@ -176,6 +176,9 @@ Video tutorial: https://www.youtube.com/watch?v=K98nTNjXkq8
|
|||
|
||||
Windows 10 consumes % of VRAM even if card unused for video output.
|
||||
|
||||
### For Mac Users
|
||||
Check out [DockerCPU.md](DockerCPU.md) for more detailed instructions.
|
||||
|
||||
### **Problem of the year**:
|
||||
|
||||
algorithm of overlaying neural face onto video face located in ConverterMasked.py.
|
||||
|
|
71
cpu.sh
Executable file
71
cpu.sh
Executable file
|
@ -0,0 +1,71 @@
|
|||
#!/bin/bash
|
||||
INTERNAL_DIR=`pwd`
|
||||
WORKSPACE=$INTERNAL_DIR/workspace
|
||||
PYTHON=`which python`
|
||||
|
||||
PS3="Please enter your choice: "
|
||||
options=("clear workspace" "extract PNG from video data_src" "data_src extract faces" "data_src sort" "extract PNG from video data_dst" "data_dst extract faces" "data_dst sort by hist" "train" "convert" "converted to mp4" "quit")
|
||||
select opt in "${options[@]}"
|
||||
do
|
||||
case $opt in
|
||||
"clear workspace" )
|
||||
echo -n "Clean up workspace? [Y/n] "; read workspace_ans
|
||||
if [ "$workspace_ans" == "Y" ] || [ "$workspace_ans" == "y" ]; then
|
||||
rm -rf $WORKSPACE
|
||||
mkdir -p $WORKSPACE/data_src/aligned
|
||||
mkdir -p $WORKSPACE/data_dst/aligned
|
||||
mkdir -p $WORKSPACE/model
|
||||
echo "Workspace has been successfully cleaned!"
|
||||
fi
|
||||
;;
|
||||
"extract PNG from video data_src" )
|
||||
echo -n "File name: "; read filename
|
||||
echo -n "FPS: "; read fps
|
||||
if [ -z "$fps" ]; then fps="25"; fi
|
||||
ffmpeg -i $WORKSPACE/$filename -r $fps $WORKSPACE/data_src/%04d.png -loglevel error
|
||||
;;
|
||||
"data_src extract faces" )
|
||||
echo -n "Detector? [mt | manual] "; read detector
|
||||
$PYTHON $INTERNAL_DIR/main.py extract --input-dir $WORKSPACE/data_src --output-dir $WORKSPACE/data_src/aligned --detector $detector --debug --cpu-only
|
||||
;;
|
||||
"data_src sort" )
|
||||
echo -n "Sort by? [blur | brightness | face-yaw | hue | hist | hist-blur | hist-dissim] "; read sort_method
|
||||
$PYTHON $INTERNAL_DIR/main.py sort --input-dir $WORKSPACE/data_src/aligned --by $sort_method
|
||||
;;
|
||||
"extract PNG from video data_dst" )
|
||||
echo -n "File name: "; read filename
|
||||
echo -n "FPS: "; read fps
|
||||
if [ -z "$fps" ]; then fps="25"; fi
|
||||
ffmpeg -i $WORKSPACE/$filename -r $fps $WORKSPACE/data_dst/%04d.png -loglevel error
|
||||
;;
|
||||
"data_dst extract faces" )
|
||||
echo -n "Detector? [mt | manual] "; read detector
|
||||
$PYTHON $INTERNAL_DIR/main.py extract --input-dir $WORKSPACE/data_dst --output-dir $WORKSPACE/data_dst/aligned --detector $detector --debug --cpu-only
|
||||
;;
|
||||
"data_dst sort by hist" )
|
||||
$PYTHON $INTERNAL_DIR/main.py sort --input-dir $WORKSPACE/data_dst/aligned --by hist
|
||||
;;
|
||||
"train" )
|
||||
echo -n "Model? [ H64 (2GB+) | H128 (3GB+) | DF (5GB+) | LIAEF128 (5GB+) | LIAEF128YAW (5GB+) | MIAEF128 (5GB+) | AVATAR (4GB+) ] "; read model
|
||||
echo -n "Show Preview? [Y/n] "; read preview
|
||||
if [ "$preview" == "Y" ] || [ "$preview" == "y" ]; then preview="--preview"; else preview=""; fi
|
||||
$PYTHON $INTERNAL_DIR/main.py train --training-data-src-dir $WORKSPACE/data_src/aligned --training-data-dst-dir $WORKSPACE/data_dst/aligned --model-dir $WORKSPACE/model --model $model --cpu-only $preview
|
||||
;;
|
||||
"convert" )
|
||||
echo -n "Model? [ H64 (2GB+) | H128 (3GB+) | DF (5GB+) | LIAEF128 (5GB+) | LIAEF128YAW (5GB+) | MIAEF128 (5GB+) | AVATAR(4GB+) ] "; read model
|
||||
$PYTHON $INTERNAL_DIR/main.py convert --input-dir $WORKSPACE/data_dst --output-dir $WORKSPACE/data_dst/merged --aligned-dir $WORKSPACE/data_dst/aligned --model-dir $WORKSPACE/model --model $model --ask-for-params --cpu-only
|
||||
;;
|
||||
"converted to mp4" )
|
||||
echo -n "File name of destination video: "; read filename
|
||||
echo -n "FPS: "; read fps
|
||||
if [ -z "$fps" ]; then fps="25"; fi
|
||||
ffmpeg -y -i $WORKSPACE/$filename -r $fps -i "$WORKSPACE/data_dst/merged/%04d.png" -map 0:a? -map 1:v -r $fps -c:v libx264 -b:v 8M -pix_fmt yuv420p -c:a aac -strict -2 -b:a 192k -ar 48000 "$WORKSPACE/result.mp4" -loglevel error
|
||||
;;
|
||||
"quit" )
|
||||
break
|
||||
;;
|
||||
*)
|
||||
echo "Invalid choice!"
|
||||
;;
|
||||
esac
|
||||
done
|
BIN
doc/merged-face.jpg
Normal file
BIN
doc/merged-face.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 14 KiB |
|
@ -2,7 +2,8 @@
|
|||
import locale
|
||||
|
||||
system_locale = locale.getdefaultlocale()[0]
|
||||
system_language = system_locale[0:2]
|
||||
# system_locale may be nil
|
||||
system_language = system_locale[0:2] if system_locale is not None else "en"
|
||||
|
||||
windows_font_name_map = {
|
||||
'en' : 'cour',
|
||||
|
|
6
main.py
6
main.py
|
@ -80,6 +80,7 @@ if __name__ == "__main__":
|
|||
model_path=arguments.model_dir,
|
||||
model_name=arguments.model_name,
|
||||
debug = arguments.debug,
|
||||
preview = arguments.preview,
|
||||
#**options
|
||||
batch_size = arguments.batch_size,
|
||||
write_preview_history = arguments.write_preview_history,
|
||||
|
@ -106,8 +107,9 @@ if __name__ == "__main__":
|
|||
train_parser.add_argument('--force-best-gpu-idx', type=int, dest="force_best_gpu_idx", default=-1, help="Force to choose this GPU idx as best(worst).")
|
||||
train_parser.add_argument('--multi-gpu', action="store_true", dest="multi_gpu", default=False, help="MultiGPU option. It will select only same best(worst) GPU models.")
|
||||
train_parser.add_argument('--force-gpu-idxs', type=str, dest="force_gpu_idxs", default=None, help="Override final GPU idxs. Example: 0,1,2.")
|
||||
train_parser.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Train on CPU.")
|
||||
|
||||
train_parser.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Train on CPU.")
|
||||
train_parser.add_argument('--preview', action="store_true",dest="preview", default=False, help="Show preview.")
|
||||
|
||||
train_parser.set_defaults (func=process_train)
|
||||
|
||||
def process_convert(arguments):
|
||||
|
|
|
@ -277,13 +277,14 @@ def previewThread (input_queue, output_queue):
|
|||
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
def main (training_data_src_dir, training_data_dst_dir, model_path, model_name, **in_options):
|
||||
print ("Running trainer.\r\n")
|
||||
def main (training_data_src_dir, training_data_dst_dir, model_path, model_name,preview, **in_options):
|
||||
print ("Running trainer(preview=%s).\r\n" % (preview))
|
||||
|
||||
output_queue = queue.Queue()
|
||||
input_queue = queue.Queue()
|
||||
import threading
|
||||
thread = threading.Thread(target=trainerThread, args=(output_queue, input_queue, training_data_src_dir, training_data_dst_dir, model_path, model_name), kwargs=in_options )
|
||||
thread.start()
|
||||
|
||||
previewThread (input_queue, output_queue)
|
||||
|
||||
if preview:
|
||||
previewThread (input_queue, output_queue)
|
|
@ -58,7 +58,7 @@ class devicelib:
|
|||
try:
|
||||
nvmlInit()
|
||||
nvmlShutdown()
|
||||
except e:
|
||||
except:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
|
9
requirements-cpu-docker.txt
Normal file
9
requirements-cpu-docker.txt
Normal file
|
@ -0,0 +1,9 @@
|
|||
pathlib==1.0.1
|
||||
scandir==1.6
|
||||
h5py==2.7.1
|
||||
Keras==2.2.4
|
||||
opencv-python==3.4.0.12
|
||||
scikit-image
|
||||
dlib==19.10.0
|
||||
tqdm
|
||||
git+https://www.github.com/keras-team/keras-contrib.git
|
Loading…
Reference in New Issue
Block a user