AMP: some arhi change results training stabilization. New options blur_out_mask + rtm_dst_denoise. Sample processors count are no more limited to 8, thus if you have AMD processor with 16+ cores, increase paging file size.

This commit is contained in:
iperov 2021-08-24 12:58:23 +04:00
parent 8e63666390
commit 91187ecb95

View File

@ -28,7 +28,9 @@ class AMPModel(ModelBase):
default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None)
default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.5)
default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', False)
default_lr_dropout = self.options['lr_dropout'] = self.load_or_def_option('lr_dropout', 'n')
default_blur_out_mask = self.options['blur_out_mask'] = self.load_or_def_option('blur_out_mask', False)
default_dst_denoise = self.options['rtm_dst_denoise'] = self.load_or_def_option('rtm_dst_denoise', False)
default_lr_dropout = self.options['lr_dropout'] = self.load_or_def_option('lr_dropout', 'n')
default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True)
default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none')
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
@ -73,6 +75,9 @@ class AMPModel(ModelBase):
if self.is_first_run() or ask_override:
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
self.options['blur_out_mask'] = io.input_bool ("Blur out mask", default_blur_out_mask, help_message='Blurs nearby area outside of applied face mask of training samples. The result is the background near the face is smoothed and less noticeable on swapped face. The exact xseg mask in src and dst faceset is required.')
self.options['rtm_dst_denoise'] = io.input_bool ("Denoise RTM DST faceset.", default_dst_denoise, help_message='Used in RTM(ReadyToMerge) training with RTM DST faceset. Removes high frequency noise keeping edges. Result is better face syncronization with any face. Can be enabled at any time.')
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
@ -120,7 +125,10 @@ class AMPModel(ModelBase):
morph_factor = self.options['morph_factor']
gan_power = self.gan_power = self.options['gan_power']
random_warp = self.options['random_warp']
blur_out_mask = self.options['blur_out_mask']
rtm_dst_denoise = self.options['rtm_dst_denoise']
ct_mode = self.options['ct_mode']
if ct_mode == 'none':
ct_mode = None
@ -128,7 +136,7 @@ class AMPModel(ModelBase):
use_fp16 = False
if self.is_exporting:
use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.')
conv_dtype = tf.float16 if use_fp16 else tf.float32
class Downscale(nn.ModelBase):
@ -289,11 +297,11 @@ class AMPModel(ModelBase):
# Initialize optimizers
clipnorm = 1.0 if self.options['clipgrad'] else 0.0
lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] else 1.0
self.all_weights = self.encoder.get_weights() + self.decoder.get_weights()
self.G_weights = self.encoder.get_weights() + self.decoder.get_weights()
self.src_dst_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt')
self.src_dst_opt.initialize_variables (self.all_weights, vars_on_cpu=optimizer_vars_on_cpu)
self.src_dst_opt.initialize_variables (self.G_weights, vars_on_cpu=optimizer_vars_on_cpu)
self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ]
if gan_power != 0:
@ -320,7 +328,13 @@ class AMPModel(ModelBase):
gpu_src_losses = []
gpu_dst_losses = []
gpu_G_loss_gradients = []
gpu_GAN_loss_grads = []
gpu_GAN_loss_gradients = []
def DLossOnes(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3])
def DLossZeros(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3])
for gpu_id in range(gpu_count):
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
@ -342,39 +356,63 @@ class AMPModel(ModelBase):
gpu_src_inter_src_code, gpu_src_inter_dst_code = self.inter_src (gpu_src_code), self.inter_dst (gpu_src_code)
gpu_dst_inter_src_code, gpu_dst_inter_dst_code = self.inter_src (gpu_dst_code), self.inter_dst (gpu_dst_code)
inter_rnd_binomial = nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor)
inter_dims_bin = int(inter_dims*morph_factor)
inter_rnd_binomial = tf.stack([tf.concat([tf.tile(tf.constant([1], tf.float32), ( inter_dims_bin, )),
tf.tile(tf.constant([0], tf.float32), ( inter_dims-inter_dims_bin, ))], 0 ) for _ in range(bs_per_gpu)], 0)
inter_rnd_binomial = tf.stop_gradient(inter_rnd_binomial[...,None,None])
gpu_src_code = gpu_src_inter_src_code * inter_rnd_binomial + gpu_src_inter_dst_code * (1-inter_rnd_binomial)
gpu_dst_code = gpu_dst_inter_dst_code
inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code)
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
gpu_pred_src_src_list.append(gpu_pred_src_src), gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst), gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
gpu_pred_src_dst_list.append(gpu_pred_src_dst), gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
gpu_target_srcm_blur = tf.clip_by_value( nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) ), 0, 0.5) * 2
gpu_target_dstm_blur = tf.clip_by_value(nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) ), 0, 0.5) * 2
gpu_target_srcm_anti = 1-gpu_target_srcm
gpu_target_dstm_anti = 1-gpu_target_dstm
gpu_target_srcm_gblur = nn.gaussian_blur(gpu_target_srcm, resolution // 32)
gpu_target_dstm_gblur = nn.gaussian_blur(gpu_target_dstm, resolution // 32)
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_gblur, 0, 0.5) * 2
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_gblur, 0, 0.5) * 2
gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur
gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur
if blur_out_mask:
#gpu_target_src = gpu_target_src*gpu_target_srcm_blur + nn.gaussian_blur(gpu_target_src, resolution // 32)*gpu_target_srcm_anti_blur
#gpu_target_dst = gpu_target_dst*gpu_target_dstm_blur + nn.gaussian_blur(gpu_target_dst, resolution // 32)*gpu_target_dstm_anti_blur
bg_blur_div = 128
gpu_target_src = gpu_target_src*gpu_target_srcm + \
tf.math.divide_no_nan(nn.gaussian_blur(gpu_target_src*gpu_target_srcm_anti, resolution / bg_blur_div),
(1-nn.gaussian_blur(gpu_target_srcm, resolution / bg_blur_div) ) ) * gpu_target_srcm_anti
gpu_target_dst = gpu_target_dst*gpu_target_dstm + \
tf.math.divide_no_nan(nn.gaussian_blur(gpu_target_dst*gpu_target_dstm_anti, resolution / bg_blur_div),
(1-nn.gaussian_blur(gpu_target_dstm, resolution / bg_blur_div)) ) * gpu_target_dstm_anti
gpu_target_src_masked = gpu_target_src*gpu_target_srcm_blur
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur
gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur
gpu_pred_src_src_masked = gpu_pred_src_src*gpu_target_srcm_blur
gpu_pred_dst_dst_masked = gpu_pred_dst_dst*gpu_target_dstm_blur
gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*gpu_target_dstm_anti_blur
# Structural loss
gpu_src_loss = tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
@ -393,20 +431,14 @@ class AMPModel(ModelBase):
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
# dst-dst background weak loss
gpu_dst_loss += tf.reduce_mean(0.1*tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
gpu_dst_loss += 0.000001*nn.total_variation_mse(gpu_pred_dst_dst_anti_masked)
gpu_src_losses += [gpu_src_loss]
gpu_dst_losses += [gpu_dst_loss]
gpu_G_loss = gpu_src_loss + gpu_dst_loss
def DLossOnes(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3])
def DLossZeros(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3])
# dst-dst background weak loss
gpu_G_loss += tf.reduce_mean(0.1*tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_dst_dst_anti_masked)
if gan_power != 0:
gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked)
gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked)
@ -419,17 +451,17 @@ class AMPModel(ModelBase):
DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2)
) * (1.0 / 8)
gpu_GAN_loss_grads += [ nn.gradients (gpu_GAN_loss, self.GAN.get_weights() ) ]
gpu_GAN_loss_gradients += [ nn.gradients (gpu_GAN_loss, self.GAN.get_weights() ) ]
gpu_G_loss += (DLossOnes(gpu_pred_src_src_d) + DLossOnes(gpu_pred_src_src_d2) + \
DLossOnes(gpu_pred_dst_dst_d) + DLossOnes(gpu_pred_dst_dst_d2)
) * gan_power
# Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src)
gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )
gpu_G_loss_gradients += [ nn.gradients ( gpu_G_loss, self.encoder.get_weights() + self.decoder.get_weights() ) ]
gpu_G_loss_gradients += [ nn.gradients ( gpu_G_loss, self.G_weights ) ]
# Average losses and gradients, and create optimizer update ops
with tf.device(f'/CPU:0'):
@ -444,9 +476,9 @@ class AMPModel(ModelBase):
src_loss = tf.concat(gpu_src_losses, 0)
dst_loss = tf.concat(gpu_dst_losses, 0)
train_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gradients))
if gan_power != 0:
GAN_train_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_grads) )
GAN_train_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_gradients) )
# Initializing training and view functions
def train(warped_src, target_src, target_srcm, target_srcm_em, \
@ -520,11 +552,13 @@ class AMPModel(ModelBase):
random_ct_samples_path=training_data_dst_path if ct_mode is not None else None #and not self.pretrain
cpu_count = min(multiprocessing.cpu_count(), 8)
cpu_count = multiprocessing.cpu_count()
src_generators_count = cpu_count // 2
dst_generators_count = cpu_count // 2
if ct_mode is not None:
src_generators_count = int(src_generators_count * 1.5)
self.set_training_data_generators ([
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
@ -541,6 +575,7 @@ class AMPModel(ModelBase):
sample_process_options=SampleProcessor.Options(random_flip=self.random_dst_flip),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'denoise_filter' : rtm_dst_denoise, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.EYES_MOUTH, 'face_type':face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
@ -616,13 +651,13 @@ class AMPModel(ModelBase):
bs = self.get_batch_size()
( (warped_src, target_src, target_srcm, target_srcm_em), \
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = self.generate_next_samples()
(warped_dst, target_dst, target_dst_train, target_dstm, target_dstm_em) ) = self.generate_next_samples()
src_loss, dst_loss = self.train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
src_loss, dst_loss = self.train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst_train, target_dstm, target_dstm_em)
for i in range(bs):
self.last_src_samples_loss.append ( (src_loss[i], target_src[i], target_srcm[i], target_srcm_em[i]) )
self.last_dst_samples_loss.append ( (dst_loss[i], target_dst[i], target_dstm[i], target_dstm_em[i]) )
self.last_dst_samples_loss.append ( (dst_loss[i], target_dst[i], target_dst_train[i], target_dstm[i], target_dstm_em[i]) )
if len(self.last_src_samples_loss) >= bs*16:
src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(0), reverse=True)
@ -633,22 +668,23 @@ class AMPModel(ModelBase):
target_srcm_em = np.stack( [ x[3] for x in src_samples_loss[:bs] ] )
target_dst = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] )
target_dstm = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] )
target_dstm_em = np.stack( [ x[3] for x in dst_samples_loss[:bs] ] )
target_dst_train = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] )
target_dstm = np.stack( [ x[3] for x in dst_samples_loss[:bs] ] )
target_dstm_em = np.stack( [ x[4] for x in dst_samples_loss[:bs] ] )
src_loss, dst_loss = self.train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst, target_dstm, target_dstm_em)
src_loss, dst_loss = self.train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst_train, target_dstm, target_dstm_em)
self.last_src_samples_loss = []
self.last_dst_samples_loss = []
if self.gan_power != 0:
self.GAN_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
self.GAN_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst_train, target_dstm, target_dstm_em)
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
#override
def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm, target_srcm_em),
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
(warped_dst, target_dst, target_dst_train, target_dstm, target_dstm_em) ) = samples
S, D, SS, DD, DDM_000, _, _ = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst, 0.0) ) ]