mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2024-03-22 13:10:55 +08:00
New script:
5.XSeg) data_dst/src mask for XSeg trainer - fetch.bat Copies faces containing XSeg polygons to aligned_xseg\ dir. Useful only if you want to collect labeled faces and reuse them in other fakes. Now you can use trained XSeg mask in the SAEHD training process. It’s mean default ‘full_face’ mask obtained from landmarks will be replaced with the mask obtained from the trained XSeg model. use 5.XSeg.optional) trained mask for data_dst/data_src - apply.bat 5.XSeg.optional) trained mask for data_dst/data_src - remove.bat Normally you don’t need it. You can use it, if you want to use ‘face_style’ and ‘bg_style’ with obstructions. XSeg trainer : now you can choose type of face XSeg trainer : now you can restart training in “override settings” Merger: XSeg-* modes now can be used with all types of faces. Therefore old MaskEditor, FANSEG models, and FAN-x modes have been removed, because the new XSeg solution is better, simpler and more convenient, which costs only 1 hour of manual masking for regular deepfake.
This commit is contained in:
parent
e5bad483ca
commit
6d3607a13d
|
@ -7,7 +7,7 @@ import numpy as np
|
|||
from core.interact import interact as io
|
||||
from core.structex import *
|
||||
from facelib import FaceType
|
||||
|
||||
from core.imagelib import SegIEPolys
|
||||
|
||||
class DFLJPG(object):
|
||||
def __init__(self, filename):
|
||||
|
@ -151,17 +151,6 @@ class DFLJPG(object):
|
|||
print (e)
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def embed_dfldict(filename, dfl_dict):
|
||||
inst = DFLJPG.load_raw (filename)
|
||||
inst.set_dict (dfl_dict)
|
||||
|
||||
try:
|
||||
with open(filename, "wb") as f:
|
||||
f.write ( inst.dump() )
|
||||
except:
|
||||
raise Exception( 'cannot save %s' % (filename) )
|
||||
|
||||
def has_data(self):
|
||||
return len(self.dfl_dict.keys()) != 0
|
||||
|
||||
|
@ -176,6 +165,8 @@ class DFLJPG(object):
|
|||
data = b""
|
||||
|
||||
dict_data = self.dfl_dict
|
||||
|
||||
# Remove None keys
|
||||
for key in list(dict_data.keys()):
|
||||
if dict_data[key] is None:
|
||||
dict_data.pop(key)
|
||||
|
@ -251,18 +242,50 @@ class DFLJPG(object):
|
|||
return None
|
||||
def set_image_to_face_mat(self, image_to_face_mat): self.dfl_dict['image_to_face_mat'] = image_to_face_mat
|
||||
|
||||
def get_ie_polys(self): return self.dfl_dict.get('ie_polys',None)
|
||||
def set_ie_polys(self, ie_polys):
|
||||
if ie_polys is not None and \
|
||||
not isinstance(ie_polys, list):
|
||||
ie_polys = ie_polys.dump()
|
||||
def get_seg_ie_polys(self):
|
||||
d = self.dfl_dict.get('seg_ie_polys',None)
|
||||
if d is not None:
|
||||
d = SegIEPolys.load(d)
|
||||
else:
|
||||
d = SegIEPolys()
|
||||
|
||||
self.dfl_dict['ie_polys'] = ie_polys
|
||||
return d
|
||||
|
||||
def get_seg_ie_polys(self): return self.dfl_dict.get('seg_ie_polys',None)
|
||||
def set_seg_ie_polys(self, seg_ie_polys):
|
||||
if seg_ie_polys is not None:
|
||||
if not isinstance(seg_ie_polys, SegIEPolys):
|
||||
raise ValueError('seg_ie_polys should be instance of SegIEPolys')
|
||||
|
||||
if seg_ie_polys.has_polys():
|
||||
seg_ie_polys = seg_ie_polys.dump()
|
||||
else:
|
||||
seg_ie_polys = None
|
||||
|
||||
self.dfl_dict['seg_ie_polys'] = seg_ie_polys
|
||||
|
||||
def get_xseg_mask(self):
|
||||
mask_buf = self.dfl_dict.get('xseg_mask',None)
|
||||
if mask_buf is None:
|
||||
return None
|
||||
|
||||
img = cv2.imdecode(mask_buf, cv2.IMREAD_UNCHANGED)
|
||||
if len(img.shape) == 2:
|
||||
img = img[...,None]
|
||||
|
||||
|
||||
return img.astype(np.float32) / 255.0
|
||||
|
||||
|
||||
def set_xseg_mask(self, mask_a):
|
||||
if mask_a is None:
|
||||
self.dfl_dict['xseg_mask'] = None
|
||||
return
|
||||
|
||||
ret, buf = cv2.imencode( '.png', np.clip( mask_a*255, 0, 255 ).astype(np.uint8) )
|
||||
if not ret:
|
||||
raise Exception("unable to generate PNG data for set_xseg_mask")
|
||||
|
||||
self.dfl_dict['xseg_mask'] = buf
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -1053,7 +1053,7 @@ class LoaderQSubprocessor(QSubprocessor):
|
|||
idx, filename = data
|
||||
dflimg = DFLIMG.load(filename)
|
||||
if dflimg is not None and dflimg.has_data():
|
||||
ie_polys = SegIEPolys.load( dflimg.get_seg_ie_polys() )
|
||||
ie_polys = dflimg.get_seg_ie_polys()
|
||||
|
||||
return idx, True, ie_polys.has_polys()
|
||||
return idx, False, False
|
||||
|
@ -1143,7 +1143,7 @@ class MainWindow(QXMainWindow):
|
|||
return False
|
||||
|
||||
dflimg = DFLIMG.load(image_path)
|
||||
ie_polys = SegIEPolys.load( dflimg.get_seg_ie_polys() )
|
||||
ie_polys = dflimg.get_seg_ie_polys()
|
||||
q_img = self.load_QImage(image_path)
|
||||
|
||||
self.canvas.op.initialize ( q_img, ie_polys=ie_polys )
|
||||
|
@ -1155,12 +1155,12 @@ class MainWindow(QXMainWindow):
|
|||
def canvas_finalize(self, image_path):
|
||||
dflimg = DFLIMG.load(image_path)
|
||||
|
||||
ie_polys = SegIEPolys.load( dflimg.get_seg_ie_polys() )
|
||||
ie_polys = dflimg.get_seg_ie_polys()
|
||||
new_ie_polys = self.canvas.op.get_ie_polys()
|
||||
|
||||
if not new_ie_polys.identical(ie_polys):
|
||||
self.image_paths_has_ie_polys[image_path] = new_ie_polys.has_polys()
|
||||
dflimg.set_seg_ie_polys( new_ie_polys.dump() )
|
||||
dflimg.set_seg_ie_polys( new_ie_polys )
|
||||
dflimg.save()
|
||||
|
||||
self.canvas.op.finalize()
|
||||
|
|
|
@ -1,109 +0,0 @@
|
|||
import numpy as np
|
||||
import cv2
|
||||
|
||||
class IEPolysPoints:
|
||||
def __init__(self, IEPolys_parent, type):
|
||||
self.parent = IEPolys_parent
|
||||
self.type = type
|
||||
self.points = np.empty( (0,2), dtype=np.int32 )
|
||||
self.n_max = self.n = 0
|
||||
|
||||
def add(self,x,y):
|
||||
self.points = np.append(self.points[0:self.n], [ (x,y) ], axis=0)
|
||||
self.n_max = self.n = self.n + 1
|
||||
self.parent.dirty = True
|
||||
|
||||
def n_dec(self):
|
||||
self.n = max(0, self.n-1)
|
||||
self.parent.dirty = True
|
||||
return self.n
|
||||
|
||||
def n_inc(self):
|
||||
self.n = min(len(self.points), self.n+1)
|
||||
self.parent.dirty = True
|
||||
return self.n
|
||||
|
||||
def n_clip(self):
|
||||
self.points = self.points[0:self.n]
|
||||
self.n_max = self.n
|
||||
|
||||
def cur_point(self):
|
||||
return self.points[self.n-1]
|
||||
|
||||
def points_to_n(self):
|
||||
return self.points[0:self.n]
|
||||
|
||||
def set_points(self, points):
|
||||
self.points = np.array(points)
|
||||
self.n_max = self.n = len(points)
|
||||
self.parent.dirty = True
|
||||
|
||||
class IEPolys:
|
||||
def __init__(self):
|
||||
self.list = []
|
||||
self.n_max = self.n = 0
|
||||
self.dirty = True
|
||||
|
||||
def add(self, type):
|
||||
self.list = self.list[0:self.n]
|
||||
l = IEPolysPoints(self, type)
|
||||
self.list.append ( l )
|
||||
self.n_max = self.n = self.n + 1
|
||||
self.dirty = True
|
||||
return l
|
||||
|
||||
def n_dec(self):
|
||||
self.n = max(0, self.n-1)
|
||||
self.dirty = True
|
||||
return self.n
|
||||
|
||||
def n_inc(self):
|
||||
self.n = min(len(self.list), self.n+1)
|
||||
self.dirty = True
|
||||
return self.n
|
||||
|
||||
def n_list(self):
|
||||
return self.list[self.n-1]
|
||||
|
||||
def n_clip(self):
|
||||
self.list = self.list[0:self.n]
|
||||
self.n_max = self.n
|
||||
if self.n > 0:
|
||||
self.list[-1].n_clip()
|
||||
|
||||
def __iter__(self):
|
||||
for n in range(self.n):
|
||||
yield self.list[n]
|
||||
|
||||
def switch_dirty(self):
|
||||
d = self.dirty
|
||||
self.dirty = False
|
||||
return d
|
||||
|
||||
def overlay_mask(self, mask):
|
||||
h,w,c = mask.shape
|
||||
white = (1,)*c
|
||||
black = (0,)*c
|
||||
for n in range(self.n):
|
||||
poly = self.list[n]
|
||||
if poly.n > 0:
|
||||
cv2.fillPoly(mask, [poly.points_to_n()], white if poly.type == 1 else black )
|
||||
|
||||
def get_total_points(self):
|
||||
return sum([self.list[n].n for n in range(self.n)])
|
||||
|
||||
def dump(self):
|
||||
result = []
|
||||
for n in range(self.n):
|
||||
l = self.list[n]
|
||||
result += [ (l.type, l.points_to_n().tolist() ) ]
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def load(ie_polys=None):
|
||||
obj = IEPolys()
|
||||
if ie_polys is not None and isinstance(ie_polys, list):
|
||||
for (type, points) in ie_polys:
|
||||
obj.add(type)
|
||||
obj.n_list().set_points(points)
|
||||
return obj
|
|
@ -15,7 +15,6 @@ from .color_transfer import color_transfer, color_transfer_mix, color_transfer_s
|
|||
|
||||
from .common import normalize_channels, cut_odd_image, overlay_alpha_image
|
||||
|
||||
from .IEPolys import IEPolys
|
||||
from .SegIEPolys import *
|
||||
|
||||
from .blursharpen import LinearMotionBlur, blursharpen
|
||||
|
|
|
@ -1,92 +0,0 @@
|
|||
"""
|
||||
using https://github.com/ternaus/TernausNet
|
||||
TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation
|
||||
"""
|
||||
|
||||
from core.leras import nn
|
||||
tf = nn.tf
|
||||
|
||||
class Ternaus(nn.ModelBase):
|
||||
def on_build(self, in_ch, base_ch):
|
||||
|
||||
self.features_0 = nn.Conv2D (in_ch, base_ch, kernel_size=3, padding='SAME')
|
||||
self.features_3 = nn.Conv2D (base_ch, base_ch*2, kernel_size=3, padding='SAME')
|
||||
self.features_6 = nn.Conv2D (base_ch*2, base_ch*4, kernel_size=3, padding='SAME')
|
||||
self.features_8 = nn.Conv2D (base_ch*4, base_ch*4, kernel_size=3, padding='SAME')
|
||||
self.features_11 = nn.Conv2D (base_ch*4, base_ch*8, kernel_size=3, padding='SAME')
|
||||
self.features_13 = nn.Conv2D (base_ch*8, base_ch*8, kernel_size=3, padding='SAME')
|
||||
self.features_16 = nn.Conv2D (base_ch*8, base_ch*8, kernel_size=3, padding='SAME')
|
||||
self.features_18 = nn.Conv2D (base_ch*8, base_ch*8, kernel_size=3, padding='SAME')
|
||||
|
||||
self.blurpool_0 = nn.BlurPool (filt_size=3)
|
||||
self.blurpool_3 = nn.BlurPool (filt_size=3)
|
||||
self.blurpool_8 = nn.BlurPool (filt_size=3)
|
||||
self.blurpool_13 = nn.BlurPool (filt_size=3)
|
||||
self.blurpool_18 = nn.BlurPool (filt_size=3)
|
||||
|
||||
self.conv_center = nn.Conv2D (base_ch*8, base_ch*8, kernel_size=3, padding='SAME')
|
||||
|
||||
self.conv1_up = nn.Conv2DTranspose (base_ch*8, base_ch*4, kernel_size=3, padding='SAME')
|
||||
self.conv1 = nn.Conv2D (base_ch*12, base_ch*8, kernel_size=3, padding='SAME')
|
||||
|
||||
self.conv2_up = nn.Conv2DTranspose (base_ch*8, base_ch*4, kernel_size=3, padding='SAME')
|
||||
self.conv2 = nn.Conv2D (base_ch*12, base_ch*8, kernel_size=3, padding='SAME')
|
||||
|
||||
self.conv3_up = nn.Conv2DTranspose (base_ch*8, base_ch*2, kernel_size=3, padding='SAME')
|
||||
self.conv3 = nn.Conv2D (base_ch*6, base_ch*4, kernel_size=3, padding='SAME')
|
||||
|
||||
self.conv4_up = nn.Conv2DTranspose (base_ch*4, base_ch, kernel_size=3, padding='SAME')
|
||||
self.conv4 = nn.Conv2D (base_ch*3, base_ch*2, kernel_size=3, padding='SAME')
|
||||
|
||||
self.conv5_up = nn.Conv2DTranspose (base_ch*2, base_ch//2, kernel_size=3, padding='SAME')
|
||||
self.conv5 = nn.Conv2D (base_ch//2+base_ch, base_ch, kernel_size=3, padding='SAME')
|
||||
|
||||
self.out_conv = nn.Conv2D (base_ch, 1, kernel_size=3, padding='SAME')
|
||||
|
||||
def forward(self, inp):
|
||||
x, = inp
|
||||
|
||||
x = x0 = tf.nn.relu(self.features_0(x))
|
||||
x = self.blurpool_0(x)
|
||||
|
||||
x = x1 = tf.nn.relu(self.features_3(x))
|
||||
x = self.blurpool_3(x)
|
||||
|
||||
x = tf.nn.relu(self.features_6(x))
|
||||
x = x2 = tf.nn.relu(self.features_8(x))
|
||||
x = self.blurpool_8(x)
|
||||
|
||||
x = tf.nn.relu(self.features_11(x))
|
||||
x = x3 = tf.nn.relu(self.features_13(x))
|
||||
x = self.blurpool_13(x)
|
||||
|
||||
x = tf.nn.relu(self.features_16(x))
|
||||
x = x4 = tf.nn.relu(self.features_18(x))
|
||||
x = self.blurpool_18(x)
|
||||
|
||||
x = self.conv_center(x)
|
||||
|
||||
x = tf.nn.relu(self.conv1_up(x))
|
||||
x = tf.concat( [x,x4], nn.conv2d_ch_axis)
|
||||
x = tf.nn.relu(self.conv1(x))
|
||||
|
||||
x = tf.nn.relu(self.conv2_up(x))
|
||||
x = tf.concat( [x,x3], nn.conv2d_ch_axis)
|
||||
x = tf.nn.relu(self.conv2(x))
|
||||
|
||||
x = tf.nn.relu(self.conv3_up(x))
|
||||
x = tf.concat( [x,x2], nn.conv2d_ch_axis)
|
||||
x = tf.nn.relu(self.conv3(x))
|
||||
|
||||
x = tf.nn.relu(self.conv4_up(x))
|
||||
x = tf.concat( [x,x1], nn.conv2d_ch_axis)
|
||||
x = tf.nn.relu(self.conv4(x))
|
||||
|
||||
x = tf.nn.relu(self.conv5_up(x))
|
||||
x = tf.concat( [x,x0], nn.conv2d_ch_axis)
|
||||
x = tf.nn.relu(self.conv5(x))
|
||||
|
||||
logits = self.out_conv(x)
|
||||
return logits, tf.nn.sigmoid(logits)
|
||||
|
||||
nn.Ternaus = Ternaus
|
|
@ -1,5 +1,4 @@
|
|||
from .ModelBase import *
|
||||
from .PatchDiscriminator import *
|
||||
from .CodeDiscriminator import *
|
||||
from .Ternaus import *
|
||||
from .XSeg import *
|
Binary file not shown.
|
@ -9,7 +9,6 @@ import numpy.linalg as npla
|
|||
from core import imagelib
|
||||
from core import mathlib
|
||||
from facelib import FaceType
|
||||
from core.imagelib import IEPolys
|
||||
from core.mathlib.umeyama import umeyama
|
||||
|
||||
landmarks_2D = np.array([
|
||||
|
@ -374,7 +373,7 @@ def expand_eyebrows(lmrks, eyebrows_expand_mod=1.0):
|
|||
|
||||
|
||||
|
||||
def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0, ie_polys=None ):
|
||||
def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0 ):
|
||||
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
|
||||
|
||||
lmrks = expand_eyebrows(image_landmarks, eyebrows_expand_mod)
|
||||
|
@ -393,9 +392,6 @@ def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0,
|
|||
merged = np.concatenate(item)
|
||||
cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), (1,) )
|
||||
|
||||
if ie_polys is not None:
|
||||
ie_polys.overlay_mask(hull_mask)
|
||||
|
||||
return hull_mask
|
||||
|
||||
def get_image_eye_mask (image_shape, image_landmarks):
|
||||
|
@ -647,13 +643,13 @@ def mirror_landmarks (landmarks, val):
|
|||
result[:,0] = val - result[:,0] - 1
|
||||
return result
|
||||
|
||||
def get_face_struct_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0, ie_polys=None, color=(1,) ):
|
||||
def get_face_struct_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0, color=(1,) ):
|
||||
mask = np.zeros(image_shape[0:2]+( len(color),),dtype=np.float32)
|
||||
lmrks = expand_eyebrows(image_landmarks, eyebrows_expand_mod)
|
||||
draw_landmarks (mask, image_landmarks, color=color, draw_circles=False, thickness=2, ie_polys=ie_polys)
|
||||
draw_landmarks (mask, image_landmarks, color=color, draw_circles=False, thickness=2)
|
||||
return mask
|
||||
|
||||
def draw_landmarks (image, image_landmarks, color=(0,255,0), draw_circles=True, thickness=1, transparent_mask=False, ie_polys=None):
|
||||
def draw_landmarks (image, image_landmarks, color=(0,255,0), draw_circles=True, thickness=1, transparent_mask=False):
|
||||
if len(image_landmarks) != 68:
|
||||
raise Exception('get_image_eye_mask works only with 68 landmarks')
|
||||
|
||||
|
@ -683,11 +679,11 @@ def draw_landmarks (image, image_landmarks, color=(0,255,0), draw_circles=True,
|
|||
cv2.circle(image, (x, y), 2, color, lineType=cv2.LINE_AA)
|
||||
|
||||
if transparent_mask:
|
||||
mask = get_image_hull_mask (image.shape, image_landmarks, ie_polys=ie_polys)
|
||||
mask = get_image_hull_mask (image.shape, image_landmarks)
|
||||
image[...] = ( image * (1-mask) + image * mask / 2 )[...]
|
||||
|
||||
def draw_rect_landmarks (image, rect, image_landmarks, face_type, face_size=256, transparent_mask=False, ie_polys=None, landmarks_color=(0,255,0)):
|
||||
draw_landmarks(image, image_landmarks, color=landmarks_color, transparent_mask=transparent_mask, ie_polys=ie_polys)
|
||||
def draw_rect_landmarks (image, rect, image_landmarks, face_type, face_size=256, transparent_mask=False, landmarks_color=(0,255,0)):
|
||||
draw_landmarks(image, image_landmarks, color=landmarks_color, transparent_mask=transparent_mask)
|
||||
imagelib.draw_rect (image, rect, (255,0,0), 2 )
|
||||
|
||||
image_to_face_mat = get_transform_mat (image_landmarks, face_size, face_type)
|
||||
|
|
|
@ -1,139 +0,0 @@
|
|||
import os
|
||||
import pickle
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from core.interact import interact as io
|
||||
from core.leras import nn
|
||||
|
||||
class TernausNet(object):
|
||||
VERSION = 1
|
||||
|
||||
def __init__ (self, name, resolution, load_weights=True, weights_file_root=None, training=False, place_model_on_cpu=False, run_on_cpu=False, optimizer=None, data_format="NHWC"):
|
||||
nn.initialize(data_format=data_format)
|
||||
tf = nn.tf
|
||||
|
||||
if weights_file_root is not None:
|
||||
weights_file_root = Path(weights_file_root)
|
||||
else:
|
||||
weights_file_root = Path(__file__).parent
|
||||
self.weights_file_root = weights_file_root
|
||||
|
||||
with tf.device ('/CPU:0'):
|
||||
#Place holders on CPU
|
||||
self.input_t = tf.placeholder (nn.floatx, nn.get4Dshape(resolution,resolution,3) )
|
||||
self.target_t = tf.placeholder (nn.floatx, nn.get4Dshape(resolution,resolution,1) )
|
||||
|
||||
# Initializing model classes
|
||||
with tf.device ('/CPU:0' if place_model_on_cpu else '/GPU:0'):
|
||||
self.net = nn.Ternaus(3, 64, name='Ternaus')
|
||||
self.net_weights = self.net.get_weights()
|
||||
|
||||
model_name = f'{name}_{resolution}'
|
||||
|
||||
self.model_filename_list = [ [self.net, f'{model_name}.npy'] ]
|
||||
|
||||
if training:
|
||||
if optimizer is None:
|
||||
raise ValueError("Optimizer should be provided for traning mode.")
|
||||
|
||||
self.opt = optimizer
|
||||
self.opt.initialize_variables (self.net_weights, vars_on_cpu=place_model_on_cpu)
|
||||
self.model_filename_list += [ [self.opt, f'{model_name}_opt.npy' ] ]
|
||||
else:
|
||||
with tf.device ('/CPU:0' if run_on_cpu else '/GPU:0'):
|
||||
_, pred = self.net([self.input_t])
|
||||
|
||||
def net_run(input_np):
|
||||
return nn.tf_sess.run ( [pred], feed_dict={self.input_t :input_np})[0]
|
||||
self.net_run = net_run
|
||||
|
||||
# Loading/initializing all models/optimizers weights
|
||||
for model, filename in self.model_filename_list:
|
||||
do_init = not load_weights
|
||||
|
||||
if not do_init:
|
||||
do_init = not model.load_weights( self.weights_file_root / filename )
|
||||
|
||||
if do_init:
|
||||
model.init_weights()
|
||||
if model == self.net:
|
||||
try:
|
||||
with open( Path(__file__).parent / 'vgg11_enc_weights.npy', 'rb' ) as f:
|
||||
d = pickle.loads (f.read())
|
||||
|
||||
for i in [0,3,6,8,11,13,16,18]:
|
||||
model.get_layer_by_name ('features_%d' % i).set_weights ( d['features.%d' % i] )
|
||||
except:
|
||||
io.log_err("Unable to load VGG11 pretrained weights from vgg11_enc_weights.npy")
|
||||
|
||||
def save_weights(self):
|
||||
for model, filename in io.progress_bar_generator(self.model_filename_list, "Saving", leave=False):
|
||||
model.save_weights( self.weights_file_root / filename )
|
||||
|
||||
def extract (self, input_image):
|
||||
input_shape_len = len(input_image.shape)
|
||||
if input_shape_len == 3:
|
||||
input_image = input_image[None,...]
|
||||
|
||||
result = np.clip ( self.net_run(input_image), 0, 1.0 )
|
||||
result[result < 0.1] = 0 #get rid of noise
|
||||
|
||||
if input_shape_len == 3:
|
||||
result = result[0]
|
||||
|
||||
return result
|
||||
|
||||
"""
|
||||
if load_weights:
|
||||
self.net.load_weights (self.weights_path)
|
||||
else:
|
||||
self.net.init_weights()
|
||||
|
||||
if load_weights:
|
||||
self.opt.load_weights (self.opt_path)
|
||||
else:
|
||||
self.opt.init_weights()
|
||||
"""
|
||||
"""
|
||||
if training:
|
||||
try:
|
||||
with open( Path(__file__).parent / 'vgg11_enc_weights.npy', 'rb' ) as f:
|
||||
d = pickle.loads (f.read())
|
||||
|
||||
for i in [0,3,6,8,11,13,16,18]:
|
||||
s = 'features.%d' % i
|
||||
|
||||
self.model.get_layer (s).set_weights ( d[s] )
|
||||
except:
|
||||
io.log_err("Unable to load VGG11 pretrained weights from vgg11_enc_weights.npy")
|
||||
|
||||
conv_weights_list = []
|
||||
for layer in self.model.layers:
|
||||
if 'CA.' in layer.name:
|
||||
conv_weights_list += [layer.weights[0]] #Conv2D kernel_weights
|
||||
CAInitializerMP ( conv_weights_list )
|
||||
"""
|
||||
|
||||
|
||||
|
||||
"""
|
||||
if training:
|
||||
inp_t = Input ( (resolution, resolution, 3) )
|
||||
real_t = Input ( (resolution, resolution, 1) )
|
||||
out_t = self.model(inp_t)
|
||||
|
||||
loss = K.mean(10*K.binary_crossentropy(real_t,out_t) )
|
||||
|
||||
out_t_diff1 = out_t[:, 1:, :, :] - out_t[:, :-1, :, :]
|
||||
out_t_diff2 = out_t[:, :, 1:, :] - out_t[:, :, :-1, :]
|
||||
|
||||
total_var_loss = K.mean( 0.1*K.abs(out_t_diff1), axis=[1, 2, 3] ) + K.mean( 0.1*K.abs(out_t_diff2), axis=[1, 2, 3] )
|
||||
|
||||
opt = Adam(lr=0.0001, beta_1=0.5, beta_2=0.999, tf_cpu_mode=2)
|
||||
|
||||
self.train_func = K.function ( [inp_t, real_t], [K.mean(loss)], opt.get_updates( [loss], self.model.trainable_weights) )
|
||||
"""
|
|
@ -14,20 +14,22 @@ class XSegNet(object):
|
|||
VERSION = 1
|
||||
|
||||
def __init__ (self, name,
|
||||
resolution,
|
||||
resolution=256,
|
||||
load_weights=True,
|
||||
weights_file_root=None,
|
||||
training=False,
|
||||
place_model_on_cpu=False,
|
||||
run_on_cpu=False,
|
||||
optimizer=None,
|
||||
data_format="NHWC"):
|
||||
data_format="NHWC",
|
||||
raise_on_no_model_files=False):
|
||||
|
||||
self.resolution = resolution
|
||||
self.weights_file_root = Path(weights_file_root) if weights_file_root is not None else Path(__file__).parent
|
||||
|
||||
nn.initialize(data_format=data_format)
|
||||
tf = nn.tf
|
||||
|
||||
self.weights_file_root = Path(weights_file_root) if weights_file_root is not None else Path(__file__).parent
|
||||
|
||||
with tf.device ('/CPU:0'):
|
||||
#Place holders on CPU
|
||||
self.input_t = tf.placeholder (nn.floatx, nn.get4Dshape(resolution,resolution,3) )
|
||||
|
@ -62,11 +64,17 @@ class XSegNet(object):
|
|||
do_init = not load_weights
|
||||
|
||||
if not do_init:
|
||||
do_init = not model.load_weights( self.weights_file_root / filename )
|
||||
model_file_path = self.weights_file_root / filename
|
||||
do_init = not model.load_weights( model_file_path )
|
||||
if do_init and raise_on_no_model_files:
|
||||
raise Exception(f'{model_file_path} does not exists.')
|
||||
|
||||
if do_init:
|
||||
model.init_weights()
|
||||
|
||||
def get_resolution(self):
|
||||
return self.resolution
|
||||
|
||||
def flow(self, x):
|
||||
return self.model(x)
|
||||
|
||||
|
|
|
@ -2,5 +2,4 @@ from .FaceType import FaceType
|
|||
from .S3FDExtractor import S3FDExtractor
|
||||
from .FANExtractor import FANExtractor
|
||||
from .FaceEnhancer import FaceEnhancer
|
||||
from .TernausNet import TernausNet
|
||||
from .XSegNet import XSegNet
|
Binary file not shown.
48
main.py
48
main.py
|
@ -224,19 +224,6 @@ if __name__ == "__main__":
|
|||
|
||||
p.set_defaults(func=process_videoed_video_from_sequence)
|
||||
|
||||
def process_labelingtool_edit_mask(arguments):
|
||||
from mainscripts import MaskEditorTool
|
||||
MaskEditorTool.mask_editor_main (arguments.input_dir, arguments.confirmed_dir, arguments.skipped_dir, no_default_mask=arguments.no_default_mask)
|
||||
|
||||
labeling_parser = subparsers.add_parser( "labelingtool", help="Labeling tool.").add_subparsers()
|
||||
p = labeling_parser.add_parser ( "edit_mask", help="")
|
||||
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory of aligned faces.")
|
||||
p.add_argument('--confirmed-dir', required=True, action=fixPathAction, dest="confirmed_dir", help="This is where the labeled faces will be stored.")
|
||||
p.add_argument('--skipped-dir', required=True, action=fixPathAction, dest="skipped_dir", help="This is where the labeled faces will be stored.")
|
||||
p.add_argument('--no-default-mask', action="store_true", dest="no_default_mask", default=False, help="Don't use default mask.")
|
||||
|
||||
p.set_defaults(func=process_labelingtool_edit_mask)
|
||||
|
||||
facesettool_parser = subparsers.add_parser( "facesettool", help="Faceset tools.").add_subparsers()
|
||||
|
||||
def process_faceset_enhancer(arguments):
|
||||
|
@ -263,8 +250,10 @@ if __name__ == "__main__":
|
|||
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
|
||||
p.set_defaults (func=process_dev_test)
|
||||
|
||||
# ========== XSeg util
|
||||
p = subparsers.add_parser( "xsegeditor", help="XSegEditor.")
|
||||
# ========== XSeg
|
||||
xseg_parser = subparsers.add_parser( "xseg", help="XSeg tools.").add_subparsers()
|
||||
|
||||
p = xseg_parser.add_parser( "editor", help="XSeg editor.")
|
||||
|
||||
def process_xsegeditor(arguments):
|
||||
osex.set_process_lowest_prio()
|
||||
|
@ -274,6 +263,35 @@ if __name__ == "__main__":
|
|||
|
||||
p.set_defaults (func=process_xsegeditor)
|
||||
|
||||
p = xseg_parser.add_parser( "apply", help="Apply trained XSeg model to the extracted faces.")
|
||||
|
||||
def process_xsegapply(arguments):
|
||||
osex.set_process_lowest_prio()
|
||||
from mainscripts import XSegUtil
|
||||
XSegUtil.apply_xseg (Path(arguments.input_dir), Path(arguments.model_dir))
|
||||
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
|
||||
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir")
|
||||
p.set_defaults (func=process_xsegapply)
|
||||
|
||||
|
||||
p = xseg_parser.add_parser( "remove", help="Remove XSeg from the extracted faces.")
|
||||
|
||||
def process_xsegremove(arguments):
|
||||
osex.set_process_lowest_prio()
|
||||
from mainscripts import XSegUtil
|
||||
XSegUtil.remove_xseg (Path(arguments.input_dir) )
|
||||
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
|
||||
p.set_defaults (func=process_xsegremove)
|
||||
|
||||
|
||||
p = xseg_parser.add_parser( "fetch", help="Copies faces containing XSeg polygons in <input_dir>_xseg dir.")
|
||||
|
||||
def process_xsegfetch(arguments):
|
||||
osex.set_process_lowest_prio()
|
||||
from mainscripts import XSegUtil
|
||||
XSegUtil.fetch_xseg (Path(arguments.input_dir) )
|
||||
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir")
|
||||
p.set_defaults (func=process_xsegfetch)
|
||||
|
||||
def bad_args(arguments):
|
||||
parser.print_help()
|
||||
|
|
|
@ -14,7 +14,7 @@ import numpy as np
|
|||
import facelib
|
||||
from core import imagelib
|
||||
from core import mathlib
|
||||
from facelib import FaceType, LandmarksProcessor, TernausNet
|
||||
from facelib import FaceType, LandmarksProcessor
|
||||
from core.interact import interact as io
|
||||
from core.joblib import Subprocessor
|
||||
from core.leras import nn
|
||||
|
|
|
@ -1,571 +0,0 @@
|
|||
import os
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import numpy.linalg as npl
|
||||
|
||||
from core import imagelib
|
||||
from DFLIMG import *
|
||||
from facelib import LandmarksProcessor
|
||||
from core.imagelib import IEPolys
|
||||
from core.interact import interact as io
|
||||
from core import pathex
|
||||
from core.cv2ex import *
|
||||
|
||||
|
||||
class MaskEditor:
|
||||
STATE_NONE=0
|
||||
STATE_MASKING=1
|
||||
|
||||
def __init__(self, img, prev_images, next_images, mask=None, ie_polys=None, get_status_lines_func=None):
|
||||
self.img = imagelib.normalize_channels (img,3)
|
||||
h, w, c = img.shape
|
||||
|
||||
if h != w and w != 256:
|
||||
#to support any square res, scale img,mask and ie_polys to 256, then scale ie_polys back on .get_ie_polys()
|
||||
raise Exception ("MaskEditor does not support image size != 256x256")
|
||||
|
||||
ph, pw = h // 4, w // 4 #pad wh
|
||||
|
||||
self.prev_images = prev_images
|
||||
self.next_images = next_images
|
||||
|
||||
if mask is not None:
|
||||
self.mask = imagelib.normalize_channels (mask,3)
|
||||
else:
|
||||
self.mask = np.zeros ( (h,w,3) )
|
||||
self.get_status_lines_func = get_status_lines_func
|
||||
|
||||
self.state_prop = self.STATE_NONE
|
||||
|
||||
self.w, self.h = w, h
|
||||
self.pw, self.ph = pw, ph
|
||||
self.pwh = np.array([self.pw, self.ph])
|
||||
self.pwh2 = np.array([self.pw*2, self.ph*2])
|
||||
self.sw, self.sh = w+pw*2, h+ph*2
|
||||
self.prwh = 64 #preview wh
|
||||
|
||||
if ie_polys is None:
|
||||
ie_polys = IEPolys()
|
||||
self.ie_polys = ie_polys
|
||||
|
||||
self.polys_mask = None
|
||||
self.preview_images = None
|
||||
|
||||
self.mouse_x = self.mouse_y = 9999
|
||||
self.screen_status_block = None
|
||||
self.screen_status_block_dirty = True
|
||||
self.screen_changed = True
|
||||
|
||||
def set_state(self, state):
|
||||
self.state = state
|
||||
|
||||
@property
|
||||
def state(self):
|
||||
return self.state_prop
|
||||
|
||||
@state.setter
|
||||
def state(self, value):
|
||||
self.state_prop = value
|
||||
if value == self.STATE_MASKING:
|
||||
self.ie_polys.dirty = True
|
||||
|
||||
def get_mask(self):
|
||||
if self.ie_polys.switch_dirty():
|
||||
self.screen_status_block_dirty = True
|
||||
self.ie_mask = img = self.mask.copy()
|
||||
|
||||
self.ie_polys.overlay_mask(img)
|
||||
|
||||
return img
|
||||
return self.ie_mask
|
||||
|
||||
def get_screen_overlay(self):
|
||||
img = np.zeros ( (self.sh, self.sw, 3) )
|
||||
|
||||
if self.state == self.STATE_MASKING:
|
||||
mouse_xy = self.mouse_xy.copy() + self.pwh
|
||||
l = self.ie_polys.n_list()
|
||||
if l.n > 0:
|
||||
p = l.cur_point().copy() + self.pwh
|
||||
color = (0,1,0) if l.type == 1 else (0,0,1)
|
||||
cv2.line(img, tuple(p), tuple(mouse_xy), color )
|
||||
|
||||
return img
|
||||
|
||||
def undo_to_begin_point(self):
|
||||
while not self.undo_point():
|
||||
pass
|
||||
|
||||
def undo_point(self):
|
||||
self.screen_changed = True
|
||||
if self.state == self.STATE_NONE:
|
||||
if self.ie_polys.n > 0:
|
||||
self.state = self.STATE_MASKING
|
||||
|
||||
if self.state == self.STATE_MASKING:
|
||||
if self.ie_polys.n_list().n_dec() == 0 and \
|
||||
self.ie_polys.n_dec() == 0:
|
||||
self.state = self.STATE_NONE
|
||||
else:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def redo_to_end_point(self):
|
||||
while not self.redo_point():
|
||||
pass
|
||||
|
||||
def redo_point(self):
|
||||
self.screen_changed = True
|
||||
if self.state == self.STATE_NONE:
|
||||
if self.ie_polys.n_max > 0:
|
||||
self.state = self.STATE_MASKING
|
||||
if self.ie_polys.n == 0:
|
||||
self.ie_polys.n_inc()
|
||||
|
||||
if self.state == self.STATE_MASKING:
|
||||
while True:
|
||||
l = self.ie_polys.n_list()
|
||||
if l.n_inc() == l.n_max:
|
||||
if self.ie_polys.n == self.ie_polys.n_max:
|
||||
break
|
||||
self.ie_polys.n_inc()
|
||||
else:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def combine_screens(self, screens):
|
||||
|
||||
screens_len = len(screens)
|
||||
|
||||
new_screens = []
|
||||
for screen, padded_overlay in screens:
|
||||
screen_img = np.zeros( (self.sh, self.sw, 3), dtype=np.float32 )
|
||||
|
||||
screen = imagelib.normalize_channels (screen, 3)
|
||||
h,w,c = screen.shape
|
||||
|
||||
screen_img[self.ph:-self.ph, self.pw:-self.pw, :] = screen
|
||||
|
||||
if padded_overlay is not None:
|
||||
screen_img = screen_img + padded_overlay
|
||||
|
||||
screen_img = np.clip(screen_img*255, 0, 255).astype(np.uint8)
|
||||
new_screens.append(screen_img)
|
||||
|
||||
return np.concatenate (new_screens, axis=1)
|
||||
|
||||
def get_screen_status_block(self, w, c):
|
||||
if self.screen_status_block_dirty:
|
||||
self.screen_status_block_dirty = False
|
||||
lines = [
|
||||
'Polys current/max = %d/%d' % (self.ie_polys.n, self.ie_polys.n_max),
|
||||
]
|
||||
if self.get_status_lines_func is not None:
|
||||
lines += self.get_status_lines_func()
|
||||
|
||||
lines_count = len(lines)
|
||||
|
||||
|
||||
h_line = 21
|
||||
h = lines_count * h_line
|
||||
img = np.ones ( (h,w,c) ) * 0.1
|
||||
|
||||
for i in range(lines_count):
|
||||
img[ i*h_line:(i+1)*h_line, 0:w] += \
|
||||
imagelib.get_text_image ( (h_line,w,c), lines[i], color=[0.8]*c )
|
||||
|
||||
self.screen_status_block = np.clip(img*255, 0, 255).astype(np.uint8)
|
||||
|
||||
return self.screen_status_block
|
||||
|
||||
def set_screen_status_block_dirty(self):
|
||||
self.screen_status_block_dirty = True
|
||||
|
||||
def set_screen_changed(self):
|
||||
self.screen_changed = True
|
||||
|
||||
def switch_screen_changed(self):
|
||||
result = self.screen_changed
|
||||
self.screen_changed = False
|
||||
return result
|
||||
|
||||
def make_screen(self):
|
||||
screen_overlay = self.get_screen_overlay()
|
||||
final_mask = self.get_mask()
|
||||
|
||||
masked_img = self.img*final_mask*0.5 + self.img*(1-final_mask)
|
||||
|
||||
pink = np.full ( (self.h, self.w, 3), (1,0,1) )
|
||||
pink_masked_img = self.img*final_mask + pink*(1-final_mask)
|
||||
|
||||
|
||||
|
||||
|
||||
screens = [ (self.img, screen_overlay),
|
||||
(masked_img, screen_overlay),
|
||||
(pink_masked_img, screen_overlay),
|
||||
]
|
||||
screens = self.combine_screens(screens)
|
||||
|
||||
if self.preview_images is None:
|
||||
sh,sw,sc = screens.shape
|
||||
|
||||
prh, prw = self.prwh, self.prwh
|
||||
|
||||
total_w = sum ([ img.shape[1] for (t,img) in self.prev_images ]) + \
|
||||
sum ([ img.shape[1] for (t,img) in self.next_images ])
|
||||
|
||||
total_images_len = len(self.prev_images) + len(self.next_images)
|
||||
|
||||
max_hor_images_count = sw // prw
|
||||
max_side_images_count = (max_hor_images_count - 1) // 2
|
||||
|
||||
prev_images = self.prev_images[-max_side_images_count:]
|
||||
next_images = self.next_images[:max_side_images_count]
|
||||
|
||||
border = 2
|
||||
|
||||
max_wh_bordered = (prw-border*2, prh-border*2)
|
||||
|
||||
prev_images = [ (t, cv2.resize( imagelib.normalize_channels(img, 3), max_wh_bordered )) for t,img in prev_images ]
|
||||
next_images = [ (t, cv2.resize( imagelib.normalize_channels(img, 3), max_wh_bordered )) for t,img in next_images ]
|
||||
|
||||
for images in [prev_images, next_images]:
|
||||
for i, (t, img) in enumerate(images):
|
||||
new_img = np.zeros ( (prh,prw, sc) )
|
||||
new_img[border:-border,border:-border] = img
|
||||
|
||||
if t == 2:
|
||||
cv2.line (new_img, ( prw//2, int(prh//1.5) ), (int(prw/1.5), prh ) , (0,1,0), thickness=2 )
|
||||
cv2.line (new_img, ( int(prw/1.5), prh ), ( prw, prh // 2 ) , (0,1,0), thickness=2 )
|
||||
elif t == 1:
|
||||
cv2.line (new_img, ( prw//2, prh//2 ), ( prw, prh ) , (0,0,1), thickness=2 )
|
||||
cv2.line (new_img, ( prw//2, prh ), ( prw, prh // 2 ) , (0,0,1), thickness=2 )
|
||||
|
||||
images[i] = new_img
|
||||
|
||||
|
||||
preview_images = []
|
||||
if len(prev_images) > 0:
|
||||
preview_images += [ np.concatenate (prev_images, axis=1) ]
|
||||
|
||||
img = np.full ( (prh,prw, sc), (0,0,1), dtype=np.float )
|
||||
img[border:-border,border:-border] = cv2.resize( self.img, max_wh_bordered )
|
||||
|
||||
preview_images += [ img ]
|
||||
|
||||
if len(next_images) > 0:
|
||||
preview_images += [ np.concatenate (next_images, axis=1) ]
|
||||
|
||||
preview_images = np.concatenate ( preview_images, axis=1 )
|
||||
|
||||
left_pad = sw // 2 - len(prev_images) * prw - prw // 2
|
||||
right_pad = sw // 2 - len(next_images) * prw - prw // 2
|
||||
|
||||
preview_images = np.concatenate ([np.zeros ( (preview_images.shape[0], left_pad, preview_images.shape[2]) ),
|
||||
preview_images,
|
||||
np.zeros ( (preview_images.shape[0], right_pad, preview_images.shape[2]) )
|
||||
], axis=1)
|
||||
self.preview_images = np.clip(preview_images * 255, 0, 255 ).astype(np.uint8)
|
||||
|
||||
status_img = self.get_screen_status_block( screens.shape[1], screens.shape[2] )
|
||||
|
||||
result = np.concatenate ( [self.preview_images, screens, status_img], axis=0 )
|
||||
|
||||
return result
|
||||
|
||||
def mask_finish(self, n_clip=True):
|
||||
if self.state == self.STATE_MASKING:
|
||||
self.screen_changed = True
|
||||
if self.ie_polys.n_list().n <= 2:
|
||||
self.ie_polys.n_dec()
|
||||
self.state = self.STATE_NONE
|
||||
if n_clip:
|
||||
self.ie_polys.n_clip()
|
||||
|
||||
def set_mouse_pos(self,x,y):
|
||||
if self.preview_images is not None:
|
||||
y -= self.preview_images.shape[0]
|
||||
|
||||
mouse_x = x % (self.sw) - self.pw
|
||||
mouse_y = y % (self.sh) - self.ph
|
||||
|
||||
|
||||
|
||||
if mouse_x != self.mouse_x or mouse_y != self.mouse_y:
|
||||
self.mouse_xy = np.array( [mouse_x, mouse_y] )
|
||||
self.mouse_x, self.mouse_y = self.mouse_xy
|
||||
self.screen_changed = True
|
||||
|
||||
def mask_point(self, type):
|
||||
self.screen_changed = True
|
||||
if self.state == self.STATE_MASKING and \
|
||||
self.ie_polys.n_list().type != type:
|
||||
self.mask_finish()
|
||||
|
||||
elif self.state == self.STATE_NONE:
|
||||
self.state = self.STATE_MASKING
|
||||
self.ie_polys.add(type)
|
||||
|
||||
if self.state == self.STATE_MASKING:
|
||||
self.ie_polys.n_list().add (self.mouse_x, self.mouse_y)
|
||||
|
||||
def get_ie_polys(self):
|
||||
return self.ie_polys
|
||||
|
||||
def set_ie_polys(self, saved_ie_polys):
|
||||
self.state = self.STATE_NONE
|
||||
self.ie_polys = saved_ie_polys
|
||||
self.redo_to_end_point()
|
||||
self.mask_finish()
|
||||
|
||||
|
||||
def mask_editor_main(input_dir, confirmed_dir=None, skipped_dir=None, no_default_mask=False):
|
||||
input_path = Path(input_dir)
|
||||
|
||||
confirmed_path = Path(confirmed_dir)
|
||||
skipped_path = Path(skipped_dir)
|
||||
|
||||
if not input_path.exists():
|
||||
raise ValueError('Input directory not found. Please ensure it exists.')
|
||||
|
||||
if not confirmed_path.exists():
|
||||
confirmed_path.mkdir(parents=True)
|
||||
|
||||
if not skipped_path.exists():
|
||||
skipped_path.mkdir(parents=True)
|
||||
|
||||
if not no_default_mask:
|
||||
eyebrows_expand_mod = np.clip ( io.input_int ("Default eyebrows expand modifier?", 100, add_info="0..400"), 0, 400 ) / 100.0
|
||||
else:
|
||||
eyebrows_expand_mod = None
|
||||
|
||||
wnd_name = "MaskEditor tool"
|
||||
io.named_window (wnd_name)
|
||||
io.capture_mouse(wnd_name)
|
||||
io.capture_keys(wnd_name)
|
||||
|
||||
cached_images = {}
|
||||
|
||||
image_paths = [ Path(x) for x in pathex.get_image_paths(input_path)]
|
||||
done_paths = []
|
||||
done_images_types = {}
|
||||
image_paths_total = len(image_paths)
|
||||
saved_ie_polys = IEPolys()
|
||||
zoom_factor = 1.0
|
||||
preview_images_count = 9
|
||||
target_wh = 256
|
||||
|
||||
do_prev_count = 0
|
||||
do_save_move_count = 0
|
||||
do_save_count = 0
|
||||
do_skip_move_count = 0
|
||||
do_skip_count = 0
|
||||
|
||||
def jobs_count():
|
||||
return do_prev_count + do_save_move_count + do_save_count + do_skip_move_count + do_skip_count
|
||||
|
||||
is_exit = False
|
||||
while not is_exit:
|
||||
|
||||
if len(image_paths) > 0:
|
||||
filepath = image_paths.pop(0)
|
||||
else:
|
||||
filepath = None
|
||||
|
||||
next_image_paths = image_paths[0:preview_images_count]
|
||||
next_image_paths_names = [ path.name for path in next_image_paths ]
|
||||
prev_image_paths = done_paths[-preview_images_count:]
|
||||
prev_image_paths_names = [ path.name for path in prev_image_paths ]
|
||||
|
||||
for key in list( cached_images.keys() ):
|
||||
if key not in prev_image_paths_names and \
|
||||
key not in next_image_paths_names:
|
||||
cached_images.pop(key)
|
||||
|
||||
for paths in [prev_image_paths, next_image_paths]:
|
||||
for path in paths:
|
||||
if path.name not in cached_images:
|
||||
cached_images[path.name] = cv2_imread(str(path)) / 255.0
|
||||
|
||||
if filepath is not None:
|
||||
dflimg = DFLIMG.load (filepath)
|
||||
|
||||
if dflimg is None or not dflimg.has_data():
|
||||
io.log_err ("%s is not a dfl image file" % (filepath.name) )
|
||||
continue
|
||||
else:
|
||||
lmrks = dflimg.get_landmarks()
|
||||
ie_polys = IEPolys.load(dflimg.get_ie_polys())
|
||||
|
||||
if filepath.name in cached_images:
|
||||
img = cached_images[filepath.name]
|
||||
else:
|
||||
img = cached_images[filepath.name] = cv2_imread(str(filepath)) / 255.0
|
||||
|
||||
|
||||
if no_default_mask:
|
||||
mask = np.zeros ( (target_wh,target_wh,3) )
|
||||
else:
|
||||
mask = LandmarksProcessor.get_image_hull_mask( img.shape, lmrks, eyebrows_expand_mod=eyebrows_expand_mod)
|
||||
else:
|
||||
img = np.zeros ( (target_wh,target_wh,3) )
|
||||
mask = np.ones ( (target_wh,target_wh,3) )
|
||||
ie_polys = None
|
||||
|
||||
def get_status_lines_func():
|
||||
return ['Progress: %d / %d . Current file: %s' % (len(done_paths), image_paths_total, str(filepath.name) if filepath is not None else "end" ),
|
||||
'[Left mouse button] - mark include mask.',
|
||||
'[Right mouse button] - mark exclude mask.',
|
||||
'[Middle mouse button] - finish current poly.',
|
||||
'[Mouse wheel] - undo/redo poly or point. [+ctrl] - undo to begin/redo to end',
|
||||
'[r] - applies edits made to last saved image.',
|
||||
'[q] - prev image. [w] - skip and move to %s. [e] - save and move to %s. ' % (skipped_path.name, confirmed_path.name),
|
||||
'[z] - prev image. [x] - skip. [c] - save. ',
|
||||
'hold [shift] - speed up the frame counter by 10.',
|
||||
'[-/+] - window zoom [esc] - quit',
|
||||
]
|
||||
|
||||
try:
|
||||
ed = MaskEditor(img,
|
||||
[ (done_images_types[name], cached_images[name]) for name in prev_image_paths_names ],
|
||||
[ (0, cached_images[name]) for name in next_image_paths_names ],
|
||||
mask, ie_polys, get_status_lines_func)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
continue
|
||||
|
||||
next = False
|
||||
while not next:
|
||||
io.process_messages(0.005)
|
||||
|
||||
if jobs_count() == 0:
|
||||
for (x,y,ev,flags) in io.get_mouse_events(wnd_name):
|
||||
x, y = int (x / zoom_factor), int(y / zoom_factor)
|
||||
ed.set_mouse_pos(x, y)
|
||||
if filepath is not None:
|
||||
if ev == io.EVENT_LBUTTONDOWN:
|
||||
ed.mask_point(1)
|
||||
elif ev == io.EVENT_RBUTTONDOWN:
|
||||
ed.mask_point(0)
|
||||
elif ev == io.EVENT_MBUTTONDOWN:
|
||||
ed.mask_finish()
|
||||
elif ev == io.EVENT_MOUSEWHEEL:
|
||||
if flags & 0x80000000 != 0:
|
||||
if flags & 0x8 != 0:
|
||||
ed.undo_to_begin_point()
|
||||
else:
|
||||
ed.undo_point()
|
||||
else:
|
||||
if flags & 0x8 != 0:
|
||||
ed.redo_to_end_point()
|
||||
else:
|
||||
ed.redo_point()
|
||||
|
||||
for key, chr_key, ctrl_pressed, alt_pressed, shift_pressed in io.get_key_events(wnd_name):
|
||||
if chr_key == 'q' or chr_key == 'z':
|
||||
do_prev_count = 1 if not shift_pressed else 10
|
||||
elif chr_key == '-':
|
||||
zoom_factor = np.clip (zoom_factor-0.1, 0.1, 4.0)
|
||||
ed.set_screen_changed()
|
||||
elif chr_key == '+':
|
||||
zoom_factor = np.clip (zoom_factor+0.1, 0.1, 4.0)
|
||||
ed.set_screen_changed()
|
||||
elif key == 27: #esc
|
||||
is_exit = True
|
||||
next = True
|
||||
break
|
||||
elif filepath is not None:
|
||||
if chr_key == 'e':
|
||||
saved_ie_polys = ed.ie_polys
|
||||
do_save_move_count = 1 if not shift_pressed else 10
|
||||
elif chr_key == 'c':
|
||||
saved_ie_polys = ed.ie_polys
|
||||
do_save_count = 1 if not shift_pressed else 10
|
||||
elif chr_key == 'w':
|
||||
do_skip_move_count = 1 if not shift_pressed else 10
|
||||
elif chr_key == 'x':
|
||||
do_skip_count = 1 if not shift_pressed else 10
|
||||
elif chr_key == 'r' and saved_ie_polys != None:
|
||||
ed.set_ie_polys(saved_ie_polys)
|
||||
|
||||
if do_prev_count > 0:
|
||||
do_prev_count -= 1
|
||||
if len(done_paths) > 0:
|
||||
if filepath is not None:
|
||||
image_paths.insert(0, filepath)
|
||||
|
||||
filepath = done_paths.pop(-1)
|
||||
done_images_types[filepath.name] = 0
|
||||
|
||||
if filepath.parent != input_path:
|
||||
new_filename_path = input_path / filepath.name
|
||||
filepath.rename ( new_filename_path )
|
||||
image_paths.insert(0, new_filename_path)
|
||||
else:
|
||||
image_paths.insert(0, filepath)
|
||||
|
||||
next = True
|
||||
elif filepath is not None:
|
||||
if do_save_move_count > 0:
|
||||
do_save_move_count -= 1
|
||||
|
||||
ed.mask_finish()
|
||||
dflimg.set_ie_polys(ed.get_ie_polys())
|
||||
dflimg.set_eyebrows_expand_mod(eyebrows_expand_mod)
|
||||
dflimg.save()
|
||||
|
||||
done_paths += [ confirmed_path / filepath.name ]
|
||||
done_images_types[filepath.name] = 2
|
||||
filepath.rename(done_paths[-1])
|
||||
|
||||
next = True
|
||||
elif do_save_count > 0:
|
||||
do_save_count -= 1
|
||||
|
||||
ed.mask_finish()
|
||||
dflimg.set_ie_polys(ed.get_ie_polys())
|
||||
dflimg.set_eyebrows_expand_mod(eyebrows_expand_mod)
|
||||
dflimg.save()
|
||||
|
||||
done_paths += [ filepath ]
|
||||
done_images_types[filepath.name] = 2
|
||||
|
||||
next = True
|
||||
elif do_skip_move_count > 0:
|
||||
do_skip_move_count -= 1
|
||||
|
||||
done_paths += [ skipped_path / filepath.name ]
|
||||
done_images_types[filepath.name] = 1
|
||||
filepath.rename(done_paths[-1])
|
||||
|
||||
next = True
|
||||
elif do_skip_count > 0:
|
||||
do_skip_count -= 1
|
||||
|
||||
done_paths += [ filepath ]
|
||||
done_images_types[filepath.name] = 1
|
||||
|
||||
next = True
|
||||
else:
|
||||
do_save_move_count = do_save_count = do_skip_move_count = do_skip_count = 0
|
||||
|
||||
if jobs_count() == 0:
|
||||
if ed.switch_screen_changed():
|
||||
screen = ed.make_screen()
|
||||
if zoom_factor != 1.0:
|
||||
h,w,c = screen.shape
|
||||
screen = cv2.resize ( screen, ( int(w*zoom_factor), int(h*zoom_factor) ) )
|
||||
io.show_image (wnd_name, screen )
|
||||
|
||||
|
||||
io.process_messages(0.005)
|
||||
|
||||
io.destroy_all_windows()
|
|
@ -12,7 +12,7 @@ from core.interact import interact as io
|
|||
from core.joblib import MPClassFuncOnDemand, MPFunc
|
||||
from core.leras import nn
|
||||
from DFLIMG import DFLIMG
|
||||
from facelib import FaceEnhancer, FaceType, LandmarksProcessor, TernausNet, XSegNet
|
||||
from facelib import FaceEnhancer, FaceType, LandmarksProcessor, XSegNet
|
||||
from merger import FrameInfo, MergerConfig, InteractiveMergerSubprocessor
|
||||
|
||||
def main (model_class_name=None,
|
||||
|
@ -55,12 +55,6 @@ def main (model_class_name=None,
|
|||
predictor_func = MPFunc(predictor_func)
|
||||
|
||||
run_on_cpu = len(nn.getCurrentDeviceConfig().devices) == 0
|
||||
fanseg_full_face_256_extract_func = MPClassFuncOnDemand(TernausNet, 'extract',
|
||||
name=f'FANSeg_{FaceType.toString(FaceType.FULL)}',
|
||||
resolution=256,
|
||||
place_model_on_cpu=True,
|
||||
run_on_cpu=run_on_cpu)
|
||||
|
||||
xseg_256_extract_func = MPClassFuncOnDemand(XSegNet, 'extract',
|
||||
name='XSeg',
|
||||
resolution=256,
|
||||
|
@ -199,7 +193,6 @@ def main (model_class_name=None,
|
|||
predictor_func = predictor_func,
|
||||
predictor_input_shape = predictor_input_shape,
|
||||
face_enhancer_func = face_enhancer_func,
|
||||
fanseg_full_face_256_extract_func = fanseg_full_face_256_extract_func,
|
||||
xseg_256_extract_func = xseg_256_extract_func,
|
||||
merger_config = cfg,
|
||||
frames = frames,
|
||||
|
|
|
@ -6,7 +6,6 @@ import sys
|
|||
import tempfile
|
||||
from functools import cmp_to_key
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
|
|
@ -5,7 +5,6 @@ import cv2
|
|||
|
||||
from DFLIMG import *
|
||||
from facelib import LandmarksProcessor, FaceType
|
||||
from core.imagelib import IEPolys
|
||||
from core.interact import interact as io
|
||||
from core import pathex
|
||||
from core.cv2ex import *
|
||||
|
@ -100,7 +99,7 @@ def add_landmarks_debug_images(input_path):
|
|||
rect = dflimg.get_source_rect()
|
||||
LandmarksProcessor.draw_rect_landmarks(img, rect, face_landmarks, FaceType.FULL )
|
||||
else:
|
||||
LandmarksProcessor.draw_landmarks(img, face_landmarks, transparent_mask=True, ie_polys=IEPolys.load(dflimg.get_ie_polys()) )
|
||||
LandmarksProcessor.draw_landmarks(img, face_landmarks, transparent_mask=True )
|
||||
|
||||
|
||||
|
||||
|
@ -160,42 +159,3 @@ def recover_original_aligned_filename(input_path):
|
|||
fs.rename (fd)
|
||||
except:
|
||||
io.log_err ('fail to rename %s' % (fs.name) )
|
||||
|
||||
|
||||
"""
|
||||
def convert_png_to_jpg_file (filepath):
|
||||
filepath = Path(filepath)
|
||||
|
||||
if filepath.suffix != '.png':
|
||||
return
|
||||
|
||||
dflpng = DFLPNG.load (str(filepath) )
|
||||
if dflpng is None:
|
||||
io.log_err ("%s is not a dfl png image file" % (filepath.name) )
|
||||
return
|
||||
|
||||
dfl_dict = dflpng.get_dict()
|
||||
|
||||
img = cv2_imread (str(filepath))
|
||||
new_filepath = str(filepath.parent / (filepath.stem + '.jpg'))
|
||||
cv2_imwrite ( new_filepath, img, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
|
||||
|
||||
DFLJPG.x( new_filepath,
|
||||
face_type=dfl_dict.get('face_type', None),
|
||||
landmarks=dfl_dict.get('landmarks', None),
|
||||
ie_polys=dfl_dict.get('ie_polys', None),
|
||||
source_filename=dfl_dict.get('source_filename', None),
|
||||
source_rect=dfl_dict.get('source_rect', None),
|
||||
source_landmarks=dfl_dict.get('source_landmarks', None) )
|
||||
|
||||
filepath.unlink()
|
||||
|
||||
def convert_png_to_jpg_folder (input_path):
|
||||
input_path = Path(input_path)
|
||||
|
||||
io.log_info ("Converting PNG to JPG...\r\n")
|
||||
|
||||
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Converting"):
|
||||
filepath = Path(filepath)
|
||||
convert_png_to_jpg_file(filepath)
|
||||
"""
|
|
@ -1,109 +1,96 @@
|
|||
import traceback
|
||||
import json
|
||||
import shutil
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
from core import pathex
|
||||
from core.imagelib import IEPolys
|
||||
from core.cv2ex import *
|
||||
from core.interact import interact as io
|
||||
from core.leras import nn
|
||||
from DFLIMG import *
|
||||
from facelib import XSegNet
|
||||
|
||||
|
||||
def merge(input_dir):
|
||||
input_path = Path(input_dir)
|
||||
def apply_xseg(input_path, model_path):
|
||||
if not input_path.exists():
|
||||
raise ValueError('input_dir not found. Please ensure it exists.')
|
||||
raise ValueError(f'{input_path} not found. Please ensure it exists.')
|
||||
|
||||
if not model_path.exists():
|
||||
raise ValueError(f'{model_path} not found. Please ensure it exists.')
|
||||
|
||||
io.log_info(f'Applying trained XSeg model to {input_path.name}/ folder.')
|
||||
|
||||
device_config = nn.DeviceConfig.ask_choose_device(choose_only_one=True)
|
||||
nn.initialize(device_config)
|
||||
|
||||
xseg = XSegNet(name='XSeg',
|
||||
load_weights=True,
|
||||
weights_file_root=model_path,
|
||||
data_format=nn.data_format,
|
||||
raise_on_no_model_files=True)
|
||||
res = xseg.get_resolution()
|
||||
|
||||
images_paths = pathex.get_image_paths(input_path, return_Path_class=True)
|
||||
|
||||
images_processed = 0
|
||||
for filepath in io.progress_bar_generator(images_paths, "Processing"):
|
||||
json_filepath = filepath.parent / (filepath.stem+'.json')
|
||||
if json_filepath.exists():
|
||||
dflimg = DFLIMG.load(filepath)
|
||||
if dflimg is not None and dflimg.has_data():
|
||||
try:
|
||||
json_dict = json.loads(json_filepath.read_text())
|
||||
|
||||
seg_ie_polys = IEPolys()
|
||||
total_points = 0
|
||||
|
||||
#include polys first
|
||||
for shape in json_dict['shapes']:
|
||||
if shape['shape_type'] == 'polygon' and \
|
||||
shape['label'] != '0':
|
||||
seg_ie_poly = seg_ie_polys.add(1)
|
||||
|
||||
for x,y in shape['points']:
|
||||
seg_ie_poly.add( int(x), int(y) )
|
||||
total_points += 1
|
||||
|
||||
#exclude polys
|
||||
for shape in json_dict['shapes']:
|
||||
if shape['shape_type'] == 'polygon' and \
|
||||
shape['label'] == '0':
|
||||
seg_ie_poly = seg_ie_polys.add(0)
|
||||
|
||||
for x,y in shape['points']:
|
||||
seg_ie_poly.add( int(x), int(y) )
|
||||
total_points += 1
|
||||
|
||||
if total_points == 0:
|
||||
io.log_info(f"No points found in {json_filepath}, skipping.")
|
||||
if dflimg is None or not dflimg.has_data():
|
||||
io.log_info(f'{filepath} is not a DFLIMG')
|
||||
continue
|
||||
|
||||
dflimg.set_seg_ie_polys ( seg_ie_polys.dump() )
|
||||
img = cv2_imread(filepath).astype(np.float32) / 255.0
|
||||
h,w,c = img.shape
|
||||
if w != res:
|
||||
img = cv2.resize( img, (res,res), interpolation=cv2.INTER_CUBIC )
|
||||
if len(img.shape) == 2:
|
||||
img = img[...,None]
|
||||
|
||||
mask = xseg.extract(img)
|
||||
mask[mask < 0.5]=0
|
||||
mask[mask >= 0.5]=1
|
||||
|
||||
dflimg.set_xseg_mask(mask)
|
||||
dflimg.save()
|
||||
|
||||
json_filepath.unlink()
|
||||
|
||||
images_processed += 1
|
||||
except:
|
||||
io.log_err(f"err {filepath}, {traceback.format_exc()}")
|
||||
return
|
||||
|
||||
io.log_info(f"Images processed: {images_processed}")
|
||||
|
||||
def split(input_dir ):
|
||||
input_path = Path(input_dir)
|
||||
def remove_xseg(input_path):
|
||||
if not input_path.exists():
|
||||
raise ValueError('input_dir not found. Please ensure it exists.')
|
||||
raise ValueError(f'{input_path} not found. Please ensure it exists.')
|
||||
|
||||
images_paths = pathex.get_image_paths(input_path, return_Path_class=True)
|
||||
|
||||
images_processed = 0
|
||||
for filepath in io.progress_bar_generator(images_paths, "Processing"):
|
||||
json_filepath = filepath.parent / (filepath.stem+'.json')
|
||||
|
||||
|
||||
dflimg = DFLIMG.load(filepath)
|
||||
if dflimg is not None and dflimg.has_data():
|
||||
try:
|
||||
seg_ie_polys = dflimg.get_seg_ie_polys()
|
||||
if seg_ie_polys is not None:
|
||||
json_dict = {}
|
||||
json_dict['version'] = "4.2.9"
|
||||
json_dict['flags'] = {}
|
||||
json_dict['shapes'] = []
|
||||
json_dict['imagePath'] = filepath.name
|
||||
json_dict['imageData'] = None
|
||||
if dflimg is None or not dflimg.has_data():
|
||||
io.log_info(f'{filepath} is not a DFLIMG')
|
||||
continue
|
||||
|
||||
for poly_type, points_list in seg_ie_polys:
|
||||
shape_dict = {}
|
||||
shape_dict['label'] = str(poly_type)
|
||||
shape_dict['points'] = points_list
|
||||
shape_dict['group_id'] = None
|
||||
shape_dict['shape_type'] = 'polygon'
|
||||
shape_dict['flags'] = {}
|
||||
json_dict['shapes'].append( shape_dict )
|
||||
|
||||
json_filepath.write_text( json.dumps (json_dict,indent=4) )
|
||||
|
||||
dflimg.set_seg_ie_polys(None)
|
||||
dflimg.set_xseg_mask(None)
|
||||
dflimg.save()
|
||||
images_processed += 1
|
||||
except:
|
||||
io.log_err(f"err {filepath}, {traceback.format_exc()}")
|
||||
return
|
||||
|
||||
io.log_info(f"Images processed: {images_processed}")
|
||||
def fetch_xseg(input_path):
|
||||
if not input_path.exists():
|
||||
raise ValueError(f'{input_path} not found. Please ensure it exists.')
|
||||
|
||||
output_path = input_path.parent / (input_path.name + '_xseg')
|
||||
output_path.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
io.log_info(f'Copying faces containing XSeg polygons to {output_path.name}/ folder.')
|
||||
|
||||
images_paths = pathex.get_image_paths(input_path, return_Path_class=True)
|
||||
|
||||
files_copied = 0
|
||||
for filepath in io.progress_bar_generator(images_paths, "Processing"):
|
||||
dflimg = DFLIMG.load(filepath)
|
||||
if dflimg is None or not dflimg.has_data():
|
||||
io.log_info(f'{filepath} is not a DFLIMG')
|
||||
continue
|
||||
|
||||
ie_polys = dflimg.get_seg_ie_polys()
|
||||
|
||||
if ie_polys.has_polys():
|
||||
files_copied += 1
|
||||
shutil.copy ( str(filepath), str(output_path / filepath.name) )
|
||||
|
||||
io.log_info(f'Files copied: {files_copied}')
|
|
@ -8,7 +8,6 @@ import numpy as np
|
|||
|
||||
from core import imagelib, pathex
|
||||
from core.cv2ex import *
|
||||
from core.imagelib import IEPolys
|
||||
from core.interact import interact as io
|
||||
from core.joblib import Subprocessor
|
||||
from core.leras import nn
|
||||
|
@ -412,31 +411,3 @@ def dev_segmented_trash(input_dir):
|
|||
except:
|
||||
io.log_info ('fail to trashing %s' % (src.name) )
|
||||
|
||||
|
||||
"""
|
||||
#mark only
|
||||
for data in extract_data:
|
||||
filepath = data.filepath
|
||||
output_filepath = output_path / (filepath.stem+'.jpg')
|
||||
|
||||
img = cv2_imread(filepath)
|
||||
img = imagelib.normalize_channels(img, 3)
|
||||
cv2_imwrite(output_filepath, img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
|
||||
|
||||
json_dict = images_jsons[filepath]
|
||||
|
||||
ie_polys = IEPolys()
|
||||
for shape in json_dict['shapes']:
|
||||
ie_poly = ie_polys.add(1)
|
||||
for x,y in shape['points']:
|
||||
ie_poly.add( int(x), int(y) )
|
||||
|
||||
|
||||
DFLJPG.x(output_filepath, face_type=FaceType.toString(FaceType.MARK_ONLY),
|
||||
landmarks=data.landmarks[0],
|
||||
ie_polys=ie_polys,
|
||||
source_filename=filepath.name,
|
||||
source_rect=data.rects[0],
|
||||
source_landmarks=data.landmarks[0]
|
||||
)
|
||||
"""
|
|
@ -66,7 +66,6 @@ class InteractiveMergerSubprocessor(Subprocessor):
|
|||
self.predictor_func = client_dict['predictor_func']
|
||||
self.predictor_input_shape = client_dict['predictor_input_shape']
|
||||
self.face_enhancer_func = client_dict['face_enhancer_func']
|
||||
self.fanseg_full_face_256_extract_func = client_dict['fanseg_full_face_256_extract_func']
|
||||
self.xseg_256_extract_func = client_dict['xseg_256_extract_func']
|
||||
|
||||
|
||||
|
@ -103,7 +102,6 @@ class InteractiveMergerSubprocessor(Subprocessor):
|
|||
try:
|
||||
final_img = MergeMasked (self.predictor_func, self.predictor_input_shape,
|
||||
face_enhancer_func=self.face_enhancer_func,
|
||||
fanseg_full_face_256_extract_func=self.fanseg_full_face_256_extract_func,
|
||||
xseg_256_extract_func=self.xseg_256_extract_func,
|
||||
cfg=cfg,
|
||||
frame_info=frame_info)
|
||||
|
@ -137,7 +135,7 @@ class InteractiveMergerSubprocessor(Subprocessor):
|
|||
|
||||
|
||||
#override
|
||||
def __init__(self, is_interactive, merger_session_filepath, predictor_func, predictor_input_shape, face_enhancer_func, fanseg_full_face_256_extract_func, xseg_256_extract_func, merger_config, frames, frames_root_path, output_path, output_mask_path, model_iter):
|
||||
def __init__(self, is_interactive, merger_session_filepath, predictor_func, predictor_input_shape, face_enhancer_func, xseg_256_extract_func, merger_config, frames, frames_root_path, output_path, output_mask_path, model_iter):
|
||||
if len (frames) == 0:
|
||||
raise ValueError ("len (frames) == 0")
|
||||
|
||||
|
@ -151,7 +149,6 @@ class InteractiveMergerSubprocessor(Subprocessor):
|
|||
self.predictor_input_shape = predictor_input_shape
|
||||
|
||||
self.face_enhancer_func = face_enhancer_func
|
||||
self.fanseg_full_face_256_extract_func = fanseg_full_face_256_extract_func
|
||||
self.xseg_256_extract_func = xseg_256_extract_func
|
||||
|
||||
self.frames_root_path = frames_root_path
|
||||
|
@ -273,7 +270,6 @@ class InteractiveMergerSubprocessor(Subprocessor):
|
|||
'predictor_func': self.predictor_func,
|
||||
'predictor_input_shape' : self.predictor_input_shape,
|
||||
'face_enhancer_func': self.face_enhancer_func,
|
||||
'fanseg_full_face_256_extract_func' : self.fanseg_full_face_256_extract_func,
|
||||
'xseg_256_extract_func' : self.xseg_256_extract_func,
|
||||
'stdin_fd': sys.stdin.fileno() if MERGER_DEBUG else None
|
||||
}
|
||||
|
|
|
@ -8,12 +8,10 @@ from facelib import FaceType, LandmarksProcessor
|
|||
from core.interact import interact as io
|
||||
from core.cv2ex import *
|
||||
|
||||
fanseg_input_size = 256
|
||||
xseg_input_size = 256
|
||||
|
||||
def MergeMaskedFace (predictor_func, predictor_input_shape,
|
||||
face_enhancer_func,
|
||||
fanseg_full_face_256_extract_func,
|
||||
xseg_256_extract_func,
|
||||
cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
|
||||
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
||||
|
@ -73,61 +71,27 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|||
|
||||
if cfg.mask_mode == 2: #dst
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
elif cfg.mask_mode >= 3 and cfg.mask_mode <= 7:
|
||||
|
||||
elif cfg.mask_mode >= 3 and cfg.mask_mode <= 6: #XSeg modes
|
||||
if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
|
||||
prd_face_fanseg_bgr = cv2.resize (prd_face_bgr, (fanseg_input_size,)*2 )
|
||||
prd_face_fanseg_mask = fanseg_full_face_256_extract_func(prd_face_fanseg_bgr)
|
||||
FAN_prd_face_mask_a_0 = cv2.resize ( prd_face_fanseg_mask, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if cfg.mask_mode >= 4 and cfg.mask_mode <= 7:
|
||||
|
||||
full_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, fanseg_input_size, face_type=FaceType.FULL)
|
||||
dst_face_fanseg_bgr = cv2.warpAffine(img_bgr, full_face_fanseg_mat, (fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
||||
dst_face_fanseg_mask = fanseg_full_face_256_extract_func(dst_face_fanseg_bgr )
|
||||
|
||||
if cfg.face_type == FaceType.FULL:
|
||||
FAN_dst_face_mask_a_0 = cv2.resize (dst_face_fanseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
else:
|
||||
face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, fanseg_input_size, face_type=cfg.face_type)
|
||||
|
||||
fanseg_rect_corner_pts = np.array ( [ [0,0], [fanseg_input_size-1,0], [0,fanseg_input_size-1] ], dtype=np.float32 )
|
||||
a = LandmarksProcessor.transform_points (fanseg_rect_corner_pts, face_fanseg_mat, invert=True )
|
||||
b = LandmarksProcessor.transform_points (a, full_face_fanseg_mat )
|
||||
m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
|
||||
FAN_dst_face_mask_a_0 = cv2.warpAffine(dst_face_fanseg_mask, m, (fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
||||
FAN_dst_face_mask_a_0 = cv2.resize (FAN_dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if cfg.mask_mode == 3: #FAN-prd
|
||||
prd_face_mask_a_0 = FAN_prd_face_mask_a_0
|
||||
elif cfg.mask_mode == 4: #FAN-dst
|
||||
prd_face_mask_a_0 = FAN_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 5:
|
||||
prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 6:
|
||||
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 7:
|
||||
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
||||
|
||||
elif cfg.mask_mode >= 8 and cfg.mask_mode <= 11:
|
||||
if cfg.mask_mode == 8 or cfg.mask_mode == 10 or cfg.mask_mode == 11:
|
||||
# obtain XSeg-prd
|
||||
prd_face_xseg_bgr = cv2.resize (prd_face_bgr, (xseg_input_size,)*2, cv2.INTER_CUBIC)
|
||||
prd_face_xseg_mask = xseg_256_extract_func(prd_face_xseg_bgr)
|
||||
X_prd_face_mask_a_0 = cv2.resize ( prd_face_xseg_mask, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if cfg.mask_mode >= 9 and cfg.mask_mode <= 11:
|
||||
whole_face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, xseg_input_size, face_type=FaceType.WHOLE_FACE)
|
||||
dst_face_xseg_bgr = cv2.warpAffine(img_bgr, whole_face_mat, (xseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
||||
if cfg.mask_mode >= 4 and cfg.mask_mode <= 6:
|
||||
# obtain XSeg-dst
|
||||
xseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, xseg_input_size, face_type=cfg.face_type)
|
||||
dst_face_xseg_bgr = cv2.warpAffine(img_bgr, xseg_mat, (xseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
||||
dst_face_xseg_mask = xseg_256_extract_func(dst_face_xseg_bgr)
|
||||
X_dst_face_mask_a_0 = cv2.resize (dst_face_xseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if cfg.mask_mode == 8: #'XSeg-prd',
|
||||
if cfg.mask_mode == 3: #'XSeg-prd',
|
||||
prd_face_mask_a_0 = X_prd_face_mask_a_0
|
||||
elif cfg.mask_mode == 9: #'XSeg-dst',
|
||||
elif cfg.mask_mode == 4: #'XSeg-dst',
|
||||
prd_face_mask_a_0 = X_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 10: #'XSeg-prd*XSeg-dst',
|
||||
elif cfg.mask_mode == 5: #'XSeg-prd*XSeg-dst',
|
||||
prd_face_mask_a_0 = X_prd_face_mask_a_0 * X_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 11: #learned*XSeg-prd*XSeg-dst'
|
||||
elif cfg.mask_mode == 6: #learned*XSeg-prd*XSeg-dst'
|
||||
prd_face_mask_a_0 = prd_face_mask_a_0 * X_prd_face_mask_a_0 * X_dst_face_mask_a_0
|
||||
|
||||
prd_face_mask_a_0[ prd_face_mask_a_0 < (1.0/255.0) ] = 0.0 # get rid of noise
|
||||
|
@ -346,7 +310,6 @@ def MergeMaskedFace (predictor_func, predictor_input_shape,
|
|||
def MergeMasked (predictor_func,
|
||||
predictor_input_shape,
|
||||
face_enhancer_func,
|
||||
fanseg_full_face_256_extract_func,
|
||||
xseg_256_extract_func,
|
||||
cfg,
|
||||
frame_info):
|
||||
|
@ -356,7 +319,7 @@ def MergeMasked (predictor_func,
|
|||
|
||||
outs = []
|
||||
for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
|
||||
out_img, out_img_merging_mask = MergeMaskedFace (predictor_func, predictor_input_shape, face_enhancer_func, fanseg_full_face_256_extract_func, xseg_256_extract_func, cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
|
||||
out_img, out_img_merging_mask = MergeMaskedFace (predictor_func, predictor_input_shape, face_enhancer_func, xseg_256_extract_func, cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
|
||||
outs += [ (out_img, out_img_merging_mask) ]
|
||||
|
||||
#Combining multiple face outputs
|
||||
|
|
|
@ -83,34 +83,14 @@ mode_str_dict = {}
|
|||
for key in mode_dict.keys():
|
||||
mode_str_dict[ mode_dict[key] ] = key
|
||||
|
||||
"""
|
||||
whole_face_mask_mode_dict = {1:'learned',
|
||||
mask_mode_dict = {1:'learned',
|
||||
2:'dst',
|
||||
3:'FAN-prd',
|
||||
4:'FAN-dst',
|
||||
5:'FAN-prd*FAN-dst',
|
||||
6:'learned*FAN-prd*FAN-dst'
|
||||
}
|
||||
"""
|
||||
whole_face_mask_mode_dict = {1:'learned',
|
||||
2:'dst',
|
||||
8:'XSeg-prd',
|
||||
9:'XSeg-dst',
|
||||
10:'XSeg-prd*XSeg-dst',
|
||||
11:'learned*XSeg-prd*XSeg-dst'
|
||||
3:'XSeg-prd',
|
||||
4:'XSeg-dst',
|
||||
5:'XSeg-prd*XSeg-dst',
|
||||
6:'learned*XSeg-prd*XSeg-dst'
|
||||
}
|
||||
|
||||
full_face_mask_mode_dict = {1:'learned',
|
||||
2:'dst',
|
||||
3:'FAN-prd',
|
||||
4:'FAN-dst',
|
||||
5:'FAN-prd*FAN-dst',
|
||||
6:'learned*FAN-prd*FAN-dst'}
|
||||
|
||||
half_face_mask_mode_dict = {1:'learned',
|
||||
2:'dst',
|
||||
4:'FAN-dst',
|
||||
7:'learned*FAN-dst'}
|
||||
|
||||
ctm_dict = { 0: "None", 1:"rct", 2:"lct", 3:"mkl", 4:"mkl-m", 5:"idt", 6:"idt-m", 7:"sot-m", 8:"mix-m" }
|
||||
ctm_str_dict = {None:0, "rct":1, "lct":2, "mkl":3, "mkl-m":4, "idt":5, "idt-m":6, "sot-m":7, "mix-m":8 }
|
||||
|
@ -176,12 +156,7 @@ class MergerConfigMasked(MergerConfig):
|
|||
self.hist_match_threshold = np.clip ( self.hist_match_threshold+diff , 0, 255)
|
||||
|
||||
def toggle_mask_mode(self):
|
||||
if self.face_type == FaceType.WHOLE_FACE:
|
||||
a = list( whole_face_mask_mode_dict.keys() )
|
||||
elif self.face_type == FaceType.FULL:
|
||||
a = list( full_face_mask_mode_dict.keys() )
|
||||
else:
|
||||
a = list( half_face_mask_mode_dict.keys() )
|
||||
a = list( mask_mode_dict.keys() )
|
||||
self.mask_mode = a[ (a.index(self.mask_mode)+1) % len(a) ]
|
||||
|
||||
def add_erode_mask_modifier(self, diff):
|
||||
|
@ -227,26 +202,11 @@ class MergerConfigMasked(MergerConfig):
|
|||
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
|
||||
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold", 255, add_info="0..255"), 0, 255)
|
||||
|
||||
if self.face_type == FaceType.WHOLE_FACE:
|
||||
s = """Choose mask mode: \n"""
|
||||
for key in whole_face_mask_mode_dict.keys():
|
||||
s += f"""({key}) {whole_face_mask_mode_dict[key]}\n"""
|
||||
for key in mask_mode_dict.keys():
|
||||
s += f"""({key}) {mask_mode_dict[key]}\n"""
|
||||
io.log_info(s)
|
||||
|
||||
self.mask_mode = io.input_int ("", 1, valid_list=whole_face_mask_mode_dict.keys() )
|
||||
elif self.face_type == FaceType.FULL:
|
||||
s = """Choose mask mode: \n"""
|
||||
for key in full_face_mask_mode_dict.keys():
|
||||
s += f"""({key}) {full_face_mask_mode_dict[key]}\n"""
|
||||
io.log_info(s)
|
||||
|
||||
self.mask_mode = io.input_int ("", 1, valid_list=full_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks.")
|
||||
else:
|
||||
s = """Choose mask mode: \n"""
|
||||
for key in half_face_mask_mode_dict.keys():
|
||||
s += f"""({key}) {half_face_mask_mode_dict[key]}\n"""
|
||||
io.log_info(s)
|
||||
self.mask_mode = io.input_int ("", 1, valid_list=half_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images.")
|
||||
self.mask_mode = io.input_int ("", 1, valid_list=mask_mode_dict.keys() )
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
self.erode_mask_modifier = np.clip ( io.input_int ("Choose erode mask modifier", 0, add_info="-400..400"), -400, 400)
|
||||
|
@ -303,12 +263,7 @@ class MergerConfigMasked(MergerConfig):
|
|||
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
|
||||
r += f"""hist_match_threshold: {self.hist_match_threshold}\n"""
|
||||
|
||||
if self.face_type == FaceType.WHOLE_FACE:
|
||||
r += f"""mask_mode: { whole_face_mask_mode_dict[self.mask_mode] }\n"""
|
||||
elif self.face_type == FaceType.FULL:
|
||||
r += f"""mask_mode: { full_face_mask_mode_dict[self.mask_mode] }\n"""
|
||||
else:
|
||||
r += f"""mask_mode: { half_face_mask_mode_dict[self.mask_mode] }\n"""
|
||||
r += f"""mask_mode: { mask_mode_dict[self.mask_mode] }\n"""
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n"""
|
||||
|
|
|
@ -1,188 +0,0 @@
|
|||
import multiprocessing
|
||||
import operator
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
|
||||
from core import mathlib
|
||||
from core.interact import interact as io
|
||||
from core.leras import nn
|
||||
from facelib import FaceType, TernausNet
|
||||
from models import ModelBase
|
||||
from samplelib import *
|
||||
|
||||
class FANSegModel(ModelBase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, force_model_class_name='FANSeg', **kwargs)
|
||||
|
||||
#override
|
||||
def on_initialize_options(self):
|
||||
device_config = nn.getCurrentDeviceConfig()
|
||||
yn_str = {True:'y',False:'n'}
|
||||
|
||||
ask_override = self.ask_override()
|
||||
if self.is_first_run() or ask_override:
|
||||
self.ask_autobackup_hour()
|
||||
self.ask_target_iter()
|
||||
self.ask_batch_size(24)
|
||||
|
||||
default_lr_dropout = self.options['lr_dropout'] = self.load_or_def_option('lr_dropout', False)
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
self.options['lr_dropout'] = io.input_bool ("Use learning rate dropout", default_lr_dropout, help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations.")
|
||||
|
||||
#override
|
||||
def on_initialize(self):
|
||||
device_config = nn.getCurrentDeviceConfig()
|
||||
nn.initialize(data_format="NHWC")
|
||||
tf = nn.tf
|
||||
|
||||
device_config = nn.getCurrentDeviceConfig()
|
||||
devices = device_config.devices
|
||||
|
||||
self.resolution = resolution = 256
|
||||
self.face_type = FaceType.FULL
|
||||
|
||||
place_model_on_cpu = len(devices) == 0
|
||||
models_opt_device = '/CPU:0' if place_model_on_cpu else '/GPU:0'
|
||||
|
||||
bgr_shape = nn.get4Dshape(resolution,resolution,3)
|
||||
mask_shape = nn.get4Dshape(resolution,resolution,1)
|
||||
|
||||
# Initializing model classes
|
||||
self.model = TernausNet(f'FANSeg_{FaceType.toString(self.face_type)}',
|
||||
resolution,
|
||||
load_weights=not self.is_first_run(),
|
||||
weights_file_root=self.get_model_root_path(),
|
||||
training=True,
|
||||
place_model_on_cpu=place_model_on_cpu,
|
||||
optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3 if self.options['lr_dropout'] else 1.0,name='opt') )
|
||||
|
||||
if self.is_training:
|
||||
# Adjust batch size for multiple GPU
|
||||
gpu_count = max(1, len(devices) )
|
||||
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
|
||||
self.set_batch_size( gpu_count*bs_per_gpu)
|
||||
|
||||
|
||||
# Compute losses per GPU
|
||||
gpu_pred_list = []
|
||||
|
||||
gpu_losses = []
|
||||
gpu_loss_gvs = []
|
||||
|
||||
for gpu_id in range(gpu_count):
|
||||
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||
|
||||
with tf.device(f'/CPU:0'):
|
||||
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
||||
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
||||
gpu_input_t = self.model.input_t [batch_slice,:,:,:]
|
||||
gpu_target_t = self.model.target_t [batch_slice,:,:,:]
|
||||
|
||||
# process model tensors
|
||||
gpu_pred_logits_t, gpu_pred_t = self.model.net([gpu_input_t])
|
||||
gpu_pred_list.append(gpu_pred_t)
|
||||
|
||||
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
|
||||
gpu_losses += [gpu_loss]
|
||||
|
||||
gpu_loss_gvs += [ nn.gradients ( gpu_loss, self.model.net_weights ) ]
|
||||
|
||||
|
||||
# Average losses and gradients, and create optimizer update ops
|
||||
with tf.device (models_opt_device):
|
||||
pred = nn.concat(gpu_pred_list, 0)
|
||||
loss = tf.reduce_mean(gpu_losses)
|
||||
|
||||
loss_gv_op = self.model.opt.get_update_op (nn.average_gv_list (gpu_loss_gvs))
|
||||
|
||||
|
||||
# Initializing training and view functions
|
||||
def train(input_np, target_np):
|
||||
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
|
||||
return l
|
||||
self.train = train
|
||||
|
||||
def view(input_np):
|
||||
return nn.tf_sess.run ( [pred], feed_dict={self.model.input_t :input_np})
|
||||
self.view = view
|
||||
|
||||
# initializing sample generators
|
||||
training_data_src_path = self.training_data_src_path
|
||||
training_data_dst_path = self.training_data_dst_path
|
||||
|
||||
cpu_count = min(multiprocessing.cpu_count(), 8)
|
||||
src_generators_count = cpu_count // 2
|
||||
dst_generators_count = cpu_count // 2
|
||||
src_generators_count = int(src_generators_count * 1.5)
|
||||
|
||||
src_generator = SampleGeneratorFace(training_data_src_path, random_ct_samples_path=training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=True),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'ct_mode':'lct', 'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'random_motion_blur':(25, 5), 'random_gaussian_blur':(25,5), 'data_format':nn.data_format, 'resolution': resolution},
|
||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
generators_count=src_generators_count )
|
||||
|
||||
dst_generator = SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||
sample_process_options=SampleProcessor.Options(random_flip=True),
|
||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||
],
|
||||
generators_count=dst_generators_count,
|
||||
raise_on_no_data=False )
|
||||
if not dst_generator.is_initialized():
|
||||
io.log_info(f"\nTo view the model on unseen faces, place any aligned faces in {training_data_dst_path}.\n")
|
||||
|
||||
self.set_training_data_generators ([src_generator, dst_generator])
|
||||
|
||||
#override
|
||||
def get_model_filename_list(self):
|
||||
return self.model.model_filename_list
|
||||
|
||||
#override
|
||||
def onSave(self):
|
||||
self.model.save_weights()
|
||||
|
||||
#override
|
||||
def onTrainOneIter(self):
|
||||
source_np, target_np = self.generate_next_samples()[0]
|
||||
loss = self.train (source_np, target_np)
|
||||
|
||||
return ( ('loss', loss ), )
|
||||
|
||||
#override
|
||||
def onGetPreview(self, samples):
|
||||
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
|
||||
|
||||
src_samples, dst_samples = samples
|
||||
source_np, target_np = src_samples
|
||||
|
||||
S, TM, SM, = [ np.clip(x, 0.0, 1.0) for x in ([source_np,target_np] + self.view (source_np) ) ]
|
||||
TM, SM, = [ np.repeat (x, (3,), -1) for x in [TM, SM] ]
|
||||
|
||||
green_bg = np.tile( np.array([0,1,0], dtype=np.float32)[None,None,...], (self.resolution,self.resolution,1) )
|
||||
|
||||
result = []
|
||||
st = []
|
||||
for i in range(n_samples):
|
||||
ar = S[i]*TM[i] + 0.5*S[i]*(1-TM[i]) + 0.5*green_bg*(1-TM[i]), SM[i], S[i]*SM[i] + green_bg*(1-SM[i])
|
||||
st.append ( np.concatenate ( ar, axis=1) )
|
||||
result += [ ('FANSeg training faces', np.concatenate (st, axis=0 )), ]
|
||||
|
||||
if len(dst_samples) != 0:
|
||||
dst_np, = dst_samples
|
||||
|
||||
D, DM, = [ np.clip(x, 0.0, 1.0) for x in ([dst_np] + self.view (dst_np) ) ]
|
||||
DM, = [ np.repeat (x, (3,), -1) for x in [DM] ]
|
||||
|
||||
st = []
|
||||
for i in range(n_samples):
|
||||
ar = D[i], DM[i], D[i]*DM[i]+ green_bg*(1-DM[i])
|
||||
st.append ( np.concatenate ( ar, axis=1) )
|
||||
|
||||
result += [ ('FANSeg unseen faces', np.concatenate (st, axis=0 )), ]
|
||||
|
||||
return result
|
||||
|
||||
Model = FANSegModel
|
|
@ -1 +0,0 @@
|
|||
from .Model import Model
|
|
@ -7,7 +7,7 @@ import numpy as np
|
|||
from core import mathlib
|
||||
from core.interact import interact as io
|
||||
from core.leras import nn
|
||||
from facelib import FaceType, TernausNet, XSegNet
|
||||
from facelib import FaceType, XSegNet
|
||||
from models import ModelBase
|
||||
from samplelib import *
|
||||
|
||||
|
@ -20,6 +20,19 @@ class XSegModel(ModelBase):
|
|||
def on_initialize_options(self):
|
||||
self.set_batch_size(4)
|
||||
|
||||
ask_override = self.ask_override()
|
||||
|
||||
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
|
||||
|
||||
if not self.is_first_run() and ask_override:
|
||||
self.restart_training = io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch.")
|
||||
else:
|
||||
self.restart_training = False
|
||||
|
||||
if self.is_first_run():
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf'], help_message="Half / mid face / full face / whole face. Choose the same as your deepfake model.").lower()
|
||||
|
||||
|
||||
#override
|
||||
def on_initialize(self):
|
||||
device_config = nn.getCurrentDeviceConfig()
|
||||
|
@ -31,7 +44,14 @@ class XSegModel(ModelBase):
|
|||
devices = device_config.devices
|
||||
|
||||
self.resolution = resolution = 256
|
||||
self.face_type = FaceType.WHOLE_FACE
|
||||
|
||||
if self.restart_training:
|
||||
self.set_iter(0)
|
||||
|
||||
self.face_type = {'h' : FaceType.HALF,
|
||||
'mf' : FaceType.MID_FULL,
|
||||
'f' : FaceType.FULL,
|
||||
'wf' : FaceType.WHOLE_FACE}[ self.options['face_type'] ]
|
||||
|
||||
place_model_on_cpu = len(devices) == 0
|
||||
models_opt_device = '/CPU:0' if place_model_on_cpu else '/GPU:0'
|
||||
|
@ -40,7 +60,7 @@ class XSegModel(ModelBase):
|
|||
mask_shape = nn.get4Dshape(resolution,resolution,1)
|
||||
|
||||
# Initializing model classes
|
||||
self.model = XSegNet(name=f'XSeg',
|
||||
self.model = XSegNet(name='XSeg',
|
||||
resolution=resolution,
|
||||
load_weights=not self.is_first_run(),
|
||||
weights_file_root=self.get_model_root_path(),
|
||||
|
|
|
@ -7,7 +7,7 @@ import numpy as np
|
|||
from core.cv2ex import *
|
||||
from DFLIMG import *
|
||||
from facelib import LandmarksProcessor
|
||||
from core.imagelib import IEPolys, SegIEPolys
|
||||
from core.imagelib import SegIEPolys
|
||||
|
||||
class SampleType(IntEnum):
|
||||
IMAGE = 0 #raw image
|
||||
|
@ -26,8 +26,8 @@ class Sample(object):
|
|||
'face_type',
|
||||
'shape',
|
||||
'landmarks',
|
||||
'ie_polys',
|
||||
'seg_ie_polys',
|
||||
'xseg_mask',
|
||||
'eyebrows_expand_mod',
|
||||
'source_filename',
|
||||
'person_name',
|
||||
|
@ -40,8 +40,8 @@ class Sample(object):
|
|||
face_type=None,
|
||||
shape=None,
|
||||
landmarks=None,
|
||||
ie_polys=None,
|
||||
seg_ie_polys=None,
|
||||
xseg_mask=None,
|
||||
eyebrows_expand_mod=None,
|
||||
source_filename=None,
|
||||
person_name=None,
|
||||
|
@ -53,8 +53,13 @@ class Sample(object):
|
|||
self.face_type = face_type
|
||||
self.shape = shape
|
||||
self.landmarks = np.array(landmarks) if landmarks is not None else None
|
||||
self.ie_polys = IEPolys.load(ie_polys)
|
||||
|
||||
if isinstance(seg_ie_polys, SegIEPolys):
|
||||
self.seg_ie_polys = seg_ie_polys
|
||||
else:
|
||||
self.seg_ie_polys = SegIEPolys.load(seg_ie_polys)
|
||||
|
||||
self.xseg_mask = xseg_mask
|
||||
self.eyebrows_expand_mod = eyebrows_expand_mod if eyebrows_expand_mod is not None else 1.0
|
||||
self.source_filename = source_filename
|
||||
self.person_name = person_name
|
||||
|
@ -90,25 +95,9 @@ class Sample(object):
|
|||
'face_type': self.face_type,
|
||||
'shape': self.shape,
|
||||
'landmarks': self.landmarks.tolist(),
|
||||
'ie_polys': self.ie_polys.dump(),
|
||||
'seg_ie_polys': self.seg_ie_polys.dump(),
|
||||
'xseg_mask' : self.xseg_mask,
|
||||
'eyebrows_expand_mod': self.eyebrows_expand_mod,
|
||||
'source_filename': self.source_filename,
|
||||
'person_name': self.person_name
|
||||
}
|
||||
|
||||
"""
|
||||
def copy_and_set(self, sample_type=None, filename=None, face_type=None, shape=None, landmarks=None, ie_polys=None, pitch_yaw_roll=None, eyebrows_expand_mod=None, source_filename=None, fanseg_mask=None, person_name=None):
|
||||
return Sample(
|
||||
sample_type=sample_type if sample_type is not None else self.sample_type,
|
||||
filename=filename if filename is not None else self.filename,
|
||||
face_type=face_type if face_type is not None else self.face_type,
|
||||
shape=shape if shape is not None else self.shape,
|
||||
landmarks=landmarks if landmarks is not None else self.landmarks.copy(),
|
||||
ie_polys=ie_polys if ie_polys is not None else self.ie_polys,
|
||||
pitch_yaw_roll=pitch_yaw_roll if pitch_yaw_roll is not None else self.pitch_yaw_roll,
|
||||
eyebrows_expand_mod=eyebrows_expand_mod if eyebrows_expand_mod is not None else self.eyebrows_expand_mod,
|
||||
source_filename=source_filename if source_filename is not None else self.source_filename,
|
||||
person_name=person_name if person_name is not None else self.person_name)
|
||||
|
||||
"""
|
|
@ -74,8 +74,8 @@ class SampleLoader:
|
|||
( face_type,
|
||||
shape,
|
||||
landmarks,
|
||||
ie_polys,
|
||||
seg_ie_polys,
|
||||
xseg_mask,
|
||||
eyebrows_expand_mod,
|
||||
source_filename,
|
||||
) in result:
|
||||
|
@ -84,35 +84,13 @@ class SampleLoader:
|
|||
face_type=FaceType.fromString (face_type),
|
||||
shape=shape,
|
||||
landmarks=landmarks,
|
||||
ie_polys=ie_polys,
|
||||
seg_ie_polys=seg_ie_polys,
|
||||
xseg_mask=xseg_mask,
|
||||
eyebrows_expand_mod=eyebrows_expand_mod,
|
||||
source_filename=source_filename,
|
||||
))
|
||||
return sample_list
|
||||
|
||||
"""
|
||||
@staticmethod
|
||||
def load_face_samples ( image_paths):
|
||||
sample_list = []
|
||||
|
||||
for filename in io.progress_bar_generator (image_paths, desc="Loading"):
|
||||
dflimg = DFLIMG.load (Path(filename))
|
||||
if dflimg is None:
|
||||
io.log_err (f"{filename} is not a dfl image file.")
|
||||
else:
|
||||
sample_list.append( Sample(filename=filename,
|
||||
sample_type=SampleType.FACE,
|
||||
face_type=FaceType.fromString ( dflimg.get_face_type() ),
|
||||
shape=dflimg.get_shape(),
|
||||
landmarks=dflimg.get_landmarks(),
|
||||
ie_polys=dflimg.get_ie_polys(),
|
||||
eyebrows_expand_mod=dflimg.get_eyebrows_expand_mod(),
|
||||
source_filename=dflimg.get_source_filename(),
|
||||
))
|
||||
return sample_list
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def upgradeToFaceTemporalSortedSamples( samples ):
|
||||
new_s = [ (s, s.source_filename) for s in samples]
|
||||
|
@ -178,8 +156,8 @@ class FaceSamplesLoaderSubprocessor(Subprocessor):
|
|||
data = (dflimg.get_face_type(),
|
||||
dflimg.get_shape(),
|
||||
dflimg.get_landmarks(),
|
||||
dflimg.get_ie_polys(),
|
||||
dflimg.get_seg_ie_polys(),
|
||||
dflimg.get_xseg_mask(),
|
||||
dflimg.get_eyebrows_expand_mod(),
|
||||
dflimg.get_source_filename() )
|
||||
|
||||
|
|
|
@ -57,6 +57,12 @@ class SampleProcessor(object):
|
|||
h,w,c = sample_bgr.shape
|
||||
|
||||
def get_full_face_mask():
|
||||
if sample.xseg_mask is not None:
|
||||
full_face_mask = sample.xseg_mask
|
||||
if full_face_mask.shape[0] != h or full_face_mask.shape[1] != w:
|
||||
full_face_mask = cv2.resize(full_face_mask, (w,h), interpolation=cv2.INTER_CUBIC)
|
||||
full_face_mask = imagelib.normalize_channels(full_face_mask, 1)
|
||||
else:
|
||||
full_face_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
|
||||
return np.clip(full_face_mask, 0, 1)
|
||||
|
||||
|
@ -127,18 +133,17 @@ class SampleProcessor(object):
|
|||
|
||||
if sample_type == SPST.FACE_MASK:
|
||||
|
||||
|
||||
if face_mask_type == SPFMT.FULL_FACE:
|
||||
img = get_full_face_mask()
|
||||
elif face_mask_type == SPFMT.EYES:
|
||||
img = get_eyes_mask()
|
||||
elif face_mask_type == SPFMT.FULL_FACE_EYES:
|
||||
img = get_full_face_mask() + get_eyes_mask()
|
||||
img = get_full_face_mask()
|
||||
img += get_eyes_mask()*img
|
||||
else:
|
||||
img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32)
|
||||
|
||||
if sample.ie_polys is not None:
|
||||
sample.ie_polys.overlay_mask(img)
|
||||
|
||||
if sample_face_type == FaceType.MARK_ONLY:
|
||||
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type)
|
||||
img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR )
|
||||
|
|
|
@ -10,4 +10,5 @@ from .SampleGeneratorImage import SampleGeneratorImage
|
|||
from .SampleGeneratorImageTemporal import SampleGeneratorImageTemporal
|
||||
from .SampleGeneratorFaceCelebAMaskHQ import SampleGeneratorFaceCelebAMaskHQ
|
||||
from .SampleGeneratorFaceXSeg import SampleGeneratorFaceXSeg
|
||||
from .SampleGeneratorFaceAvatarOperator import SampleGeneratorFaceAvatarOperator
|
||||
from .PackedFaceset import PackedFaceset
|
Loading…
Reference in New Issue
Block a user