mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2024-03-22 13:10:55 +08:00
_
This commit is contained in:
parent
f99b8a0842
commit
4581d48ff0
|
@ -1,7 +1,140 @@
|
|||
import numpy as np
|
||||
import numpy.linalg as npla
|
||||
import cv2
|
||||
from core import randomex
|
||||
|
||||
|
||||
def mls_rigid_deformation(vy, vx, p, q, alpha=1.0, eps=1e-8):
|
||||
""" Rigid deformation
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vx, vy: ndarray
|
||||
coordinate grid, generated by np.meshgrid(gridX, gridY)
|
||||
p: ndarray
|
||||
an array with size [n, 2], original control points
|
||||
q: ndarray
|
||||
an array with size [n, 2], final control points
|
||||
alpha: float
|
||||
parameter used by weights
|
||||
eps: float
|
||||
epsilon
|
||||
|
||||
Return
|
||||
------
|
||||
A deformed image.
|
||||
"""
|
||||
# Change (x, y) to (row, col)
|
||||
q = np.ascontiguousarray(q[:, [1, 0]].astype(np.int16))
|
||||
p = np.ascontiguousarray(p[:, [1, 0]].astype(np.int16))
|
||||
|
||||
# Exchange p and q and hence we transform destination pixels to the corresponding source pixels.
|
||||
p, q = q, p
|
||||
|
||||
grow = vx.shape[0] # grid rows
|
||||
gcol = vx.shape[1] # grid cols
|
||||
ctrls = p.shape[0] # control points
|
||||
|
||||
# Compute
|
||||
reshaped_p = p.reshape(ctrls, 2, 1, 1) # [ctrls, 2, 1, 1]
|
||||
reshaped_v = np.vstack((vx.reshape(1, grow, gcol), vy.reshape(1, grow, gcol))) # [2, grow, gcol]
|
||||
|
||||
w = 1.0 / (np.sum((reshaped_p - reshaped_v).astype(np.float32) ** 2, axis=1) + eps) ** alpha # [ctrls, grow, gcol]
|
||||
w /= np.sum(w, axis=0, keepdims=True) # [ctrls, grow, gcol]
|
||||
|
||||
pstar = np.zeros((2, grow, gcol), np.float32)
|
||||
for i in range(ctrls):
|
||||
pstar += w[i] * reshaped_p[i] # [2, grow, gcol]
|
||||
|
||||
vpstar = reshaped_v - pstar # [2, grow, gcol]
|
||||
reshaped_vpstar = vpstar.reshape(2, 1, grow, gcol) # [2, 1, grow, gcol]
|
||||
neg_vpstar_verti = vpstar[[1, 0],...] # [2, grow, gcol]
|
||||
neg_vpstar_verti[1,...] = -neg_vpstar_verti[1,...]
|
||||
reshaped_neg_vpstar_verti = neg_vpstar_verti.reshape(2, 1, grow, gcol) # [2, 1, grow, gcol]
|
||||
mul_right = np.concatenate((reshaped_vpstar, reshaped_neg_vpstar_verti), axis=1) # [2, 2, grow, gcol]
|
||||
reshaped_mul_right = mul_right.reshape(2, 2, grow, gcol) # [2, 2, grow, gcol]
|
||||
|
||||
# Calculate q
|
||||
reshaped_q = q.reshape((ctrls, 2, 1, 1)) # [ctrls, 2, 1, 1]
|
||||
qstar = np.zeros((2, grow, gcol), np.float32)
|
||||
for i in range(ctrls):
|
||||
qstar += w[i] * reshaped_q[i] # [2, grow, gcol]
|
||||
|
||||
temp = np.zeros((grow, gcol, 2), np.float32)
|
||||
for i in range(ctrls):
|
||||
phat = reshaped_p[i] - pstar # [2, grow, gcol]
|
||||
reshaped_phat = phat.reshape(1, 2, grow, gcol) # [1, 2, grow, gcol]
|
||||
reshaped_w = w[i].reshape(1, 1, grow, gcol) # [1, 1, grow, gcol]
|
||||
neg_phat_verti = phat[[1, 0]] # [2, grow, gcol]
|
||||
neg_phat_verti[1] = -neg_phat_verti[1]
|
||||
reshaped_neg_phat_verti = neg_phat_verti.reshape(1, 2, grow, gcol) # [1, 2, grow, gcol]
|
||||
mul_left = np.concatenate((reshaped_phat, reshaped_neg_phat_verti), axis=0) # [2, 2, grow, gcol]
|
||||
|
||||
A = np.matmul((reshaped_w * mul_left).transpose(2, 3, 0, 1),
|
||||
reshaped_mul_right.transpose(2, 3, 0, 1)) # [grow, gcol, 2, 2]
|
||||
|
||||
qhat = reshaped_q[i] - qstar # [2, grow, gcol]
|
||||
reshaped_qhat = qhat.reshape(1, 2, grow, gcol).transpose(2, 3, 0, 1) # [grow, gcol, 1, 2]
|
||||
|
||||
# Get final image transfomer -- 3-D array
|
||||
temp += np.matmul(reshaped_qhat, A).reshape(grow, gcol, 2) # [grow, gcol, 2]
|
||||
|
||||
temp = temp.transpose(2, 0, 1) # [2, grow, gcol]
|
||||
|
||||
normed_temp = np.linalg.norm(temp, axis=0, keepdims=True) # [1, grow, gcol]
|
||||
normed_vpstar = np.linalg.norm(vpstar, axis=0, keepdims=True) # [1, grow, gcol]
|
||||
nan_mask = normed_temp[0]==0
|
||||
|
||||
transformers = np.true_divide(temp, normed_temp, out=np.zeros_like(temp), where= ~nan_mask) * normed_vpstar + qstar
|
||||
# fix nan values
|
||||
nan_mask_flat = np.flatnonzero(nan_mask)
|
||||
nan_mask_anti_flat = np.flatnonzero(~nan_mask)
|
||||
transformers[0][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[0][~nan_mask])
|
||||
transformers[1][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[1][~nan_mask])
|
||||
|
||||
return transformers
|
||||
|
||||
|
||||
def gen_pts(W, H, rnd_state=None):
|
||||
|
||||
if rnd_state is None:
|
||||
rnd_state = np.random
|
||||
|
||||
min_pts, max_pts = 4, 16
|
||||
n_pts = rnd_state.randint(min_pts, max_pts)
|
||||
|
||||
min_radius_per = 0.00
|
||||
max_radius_per = 0.10
|
||||
pts = []
|
||||
|
||||
for i in range(max_pts):
|
||||
while True:
|
||||
x, y = rnd_state.randint(W), rnd_state.randint(H)
|
||||
rad = min_radius_per + rnd_state.rand()*(max_radius_per-min_radius_per)
|
||||
|
||||
intersect = False
|
||||
for px,py,prad,_,_ in pts:
|
||||
|
||||
dist = npla.norm([x-px, y-py])
|
||||
if dist <= (rad+prad)*2:
|
||||
intersect = True
|
||||
break
|
||||
if intersect:
|
||||
continue
|
||||
|
||||
angle = rnd_state.rand()*(2*np.pi)
|
||||
x2 = int(x+np.cos(angle)*W*rad)
|
||||
y2 = int(y+np.sin(angle)*H*rad)
|
||||
|
||||
break
|
||||
pts.append( (x,y,rad, x2,y2) )
|
||||
|
||||
pts1 = np.array( [ [pt[0],pt[1]] for pt in pts ] )
|
||||
pts2 = np.array( [ [pt[-2],pt[-1]] for pt in pts ] )
|
||||
|
||||
return pts1, pts2
|
||||
|
||||
|
||||
def gen_warp_params (w, flip=False, rotation_range=[-10,10], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_state=None ):
|
||||
if rnd_state is None:
|
||||
rnd_state = np.random
|
||||
|
@ -17,22 +150,28 @@ def gen_warp_params (w, flip=False, rotation_range=[-10,10], scale_range=[-0.5,
|
|||
ty = rnd_state.uniform( ty_range[0], ty_range[1] )
|
||||
p_flip = flip and rnd_state.randint(10) < 4
|
||||
|
||||
#random warp by grid
|
||||
#random warp V1
|
||||
cell_size = [ w // (2**i) for i in range(1,4) ] [ rnd_state.randint(3) ]
|
||||
cell_count = w // cell_size + 1
|
||||
|
||||
grid_points = np.linspace( 0, w, cell_count)
|
||||
mapx = np.broadcast_to(grid_points, (cell_count, cell_count)).copy()
|
||||
mapy = mapx.T
|
||||
|
||||
mapx[1:-1,1:-1] = mapx[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24)
|
||||
mapy[1:-1,1:-1] = mapy[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24)
|
||||
|
||||
half_cell_size = cell_size // 2
|
||||
|
||||
mapx = cv2.resize(mapx, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32)
|
||||
mapy = cv2.resize(mapy, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32)
|
||||
|
||||
##############
|
||||
|
||||
# random warp V2
|
||||
# pts1, pts2 = gen_pts(w, w, rnd_state)
|
||||
# gridX = np.arange(w, dtype=np.int16)
|
||||
# gridY = np.arange(w, dtype=np.int16)
|
||||
# vy, vx = np.meshgrid(gridX, gridY)
|
||||
# drigid = mls_rigid_deformation(vy, vx, pts1, pts2)
|
||||
# mapy, mapx = drigid.astype(np.float32)
|
||||
################
|
||||
|
||||
#random transform
|
||||
random_transform_mat = cv2.getRotationMatrix2D((w // 2, w // 2), rotation, scale)
|
||||
random_transform_mat[:, 2] += (tx*w, ty*w)
|
||||
|
|
Loading…
Reference in New Issue
Block a user