This commit is contained in:
Ye WU 2014-02-18 11:13:16 -08:00
commit b871abfc72
2 changed files with 145 additions and 20 deletions

View File

@ -1,7 +1,8 @@
#include "stdafx.h"
#include <vector>
#include <cstdint>
#define WRONG_CODE_ENABLED 1
#define WRONG_CODE_ENABLED 0
// 0. Basic Form
namespace _0
@ -92,6 +93,45 @@ namespace _1_2_2
// 1.3 Instanciating 2
namespace _1_3
{
template <int i> class A
{
public:
void foo()
{
}
};
template <uint8_t a, typename b, void* c> class B {};
template <void (*a)()> class C {};
template <void (A<3>::*a)()> class D {};
#if WRONG_CODE_ENABLED
template <float a> class E {};
#endif
void foo()
{
A<5> a;
B<7, A<5>, nullptr> b;
C<&foo> c;
D<&A<3>::foo> d;
#if WRONG_CODE_ENABLED
int x = 3;
A<x> b;
#endif
}
#if WRONG_CODE_ENABLED
const char* s = "abc";
template <char const* s> class S
{
};
void foo2()
{
S<"abc"> i;
}
#endif
template <typename T>
class ClassB
{

121
ReadMe.md
View File

@ -1,4 +1,4 @@

# C++ Template 进阶指南
## 0. 前言
@ -13,11 +13,11 @@ C++之所以变成一门层次丰富、结构多变、语法繁冗的语言,
但是实际上C++模板远没有想象的那么复杂。我们只需要换一个视角在C++03的时候模板本身就可以独立成为一门“语言”。它有“值”有“函数”有“表达式”和“语句”。除了语法比较蹩脚外它既没有指针也没有数组更没有C++里面复杂的继承和多态。可以说它要比C语言要简单的多。如果我们把模板当做是一门语言来学习那只需要花费学习OO零头的时间即可掌握。按照这样的思路可以说在各种模板书籍中出现的多数技巧都可以被轻松理解。
简单回顾一下模板的历史。87年的时候泛型Generic Programming被纳入了C++的考虑范畴并直接导致了后来模板语法的产生。可以说模板语法一开始就是为了在C++中提供泛型机制。92年的时候Alexandar Stepanov开始研究利用模板语法制作程序库后来这一程序库发展成STL并在93年被接纳入标准中。
简单回顾一下模板的历史。87年的时候泛型Generic Programming便被纳入了C++的考虑范畴并直接导致了后来模板语法的产生。可以说模板语法一开始就是为了在C++中提供泛型机制。92年的时候Alexander Stepanov开始研究利用模板语法制作程序库后来这一程序库发展成STL并在93年被接纳入标准中。
此时不少人以为STL已经是C++模板的集大成之作C++模板技止于此。但是在95年的《C++ Report》上John Barton和Lee Nackman提出了一个矩阵乘法的模板示例。可以说元编程在那个时候开始被很多人所关注。自此篇文章发表之后很多大牛都开始对模板产生了浓厚的兴趣。其中对元编程技法贡献最大的当属Alexandrescu的《Modern C++ Design》及模板程序库Loki。这一2001年发表的图书间接地导致了模板元编程库的出现。书中所使用的Typelist等泛型组件和Policy等设计方法令人耳目一新。但是因为全书用的是近乎Geek的手法来构造一切设施因此使得此书阅读起来略有难度。
此时不少人以为STL已经是C++模板的集大成之作C++模板技止于此。但是在95年的《C++ Report》上John Barton和Lee Nackman提出了一个矩阵乘法的模板示例。可以说元编程在那个时候开始被很多人所关注。自此篇文章发表之后很多大牛都开始对模板产生了浓厚的兴趣。其中对元编程技法贡献最大的当属Alexandrescu的《Modern C++ Design》及模板程序库Loki。这一2001年发表的图书间接地导致了模板元编程库的出现。书中所使用的Typelist等泛型组件和Policy等设计方法令人耳目一新。但是因为全书用的是近乎Geek的手法来构造一切设施因此使得此书阅读起来略有难度。
2002年出版的另一本书《C++ Templates》可以说是在Template方面的集大成作。它详细阐述了模板的语法、提供了和模板有关的语言细节信息,举了很多有代表性例子。但是对于模板新手来说,这本书细节如此丰富,让他们随随便便就打了退堂鼓缴械投降。
2002年出版的另一本书《C++ Templates》可以说是在Template方面的集大成作。它详细阐述了模板的语法、提供了和模板有关的语言细节信息,举了很多有代表性例子。但是对于模板新手来说,这本书细节如此丰富,让他们随随便便就打了退堂鼓缴械投降。
本文的写作初衷,就是通过“编程语言”的视角,介绍一个简单、清晰的“模板语言”。我会尽可能的将模板的诸多要素连串起来,用一些简单的例子帮助读者学习这门“语言”,让读者在编写、阅读模板代码的时候,能像 `if(exp) { dosomething(); }`一样的信手拈来,让“模板元编程”技术成为读者牢固掌握、可举一反三的有用技能。
@ -70,7 +70,7 @@ template <typename T> class ClassA
void foo(int a);
```
`T`则可以类比为函数形参`a`,这里的“模板形参”`T`,也同函数形参一样取成任何你想要的名字;`typename`则类似于例子中函数参数类型`int`,它表示模板参数中的`T`将匹配一个类型。
`T`则可以类比为函数形参`a`,这里的“模板形参”`T`,也同函数形参一样取成任何你想要的名字;`typename`则类似于例子中函数参数类型`int`,它表示模板参数中的`T`将匹配一个类型。除了 `typename` 之外,我们再后面还要讲到,整型也可以作为模板的参数。
在定义完模板参数之后,便可以定义你所需要的类。不过在定义类的时候,除了一般类可以使用的类型外,你还可以使用在模板参数中使用的类型 `T`。可以说,这个 `T`是模板的精髓因为你可以通过指定模板实参将T替换成你所需要的类型。
@ -198,7 +198,7 @@ void vector::clear()
因此,在成员函数实现的时候,必须要提供模板参数。此外,为什么类型名不是`vector`而是`vector<T>`呢?
如果你了解过模板的偏特化与特化的语法应该能看出这里的vector<T>在语法上类似于特化/偏特化。实际上,这里的函数定义也确实是成员函数的偏特化。特化和偏特化的概念,本文会在第二部分详细介绍。
最终,正确的成员函数实现如下所示:
综上,正确的成员函数实现如下所示:
``` C++
template <typename T> // 模板参数
@ -364,8 +364,7 @@ float a = GetValue(0); // 出错了!
int b = GetValue(1); // 也出错了!
```
为什么会出错呢?你仔细想了想,原来编译器是没办法去根据返回值推断类型的。函数调用的时候,返回值被谁接受还不知道呢。
如下修改后,就一切正常了:
为什么会出错呢?你仔细想了想,原来编译器是没办法去根据返回值推断类型的。函数调用的时候,返回值被谁接受还不知道呢。如下修改后,就一切正常了:
``` C++
float a = GetValue<float>(0);
@ -374,14 +373,14 @@ int b = GetValue<int>(1);
是不是so easy啊你又信心满满的做了一个练习
你要写一个模板函数叫 `c_style_cast`顾名思义执行的是C风格的转换。然后出于方便起见你希望它能和 `static_cast` 这样的内置转换有同样的写法。
于是你写了一个use case。
你要写一个模板函数叫 `c_style_cast`顾名思义执行的是C风格的转换。然后出于方便起见你希望它能和 `static_cast` 这样的内置转换有同样的写法。于是你写了一个use case。
``` C++
DstT dest = c_style_cast<DstT>(src);
```
根据调用形式你知道了,有 `DstT``SrcT` 两个模板参数。参数只有一个, `src`,所以函数的形参当然是这么写了: `(SrcT src)`。实现也很简单, `(DstT)v`
我们把手上得到的信息来拼一拼,就可以编写自己的函数模板了:
``` C++
@ -400,8 +399,7 @@ float i = c_style_cast<float>(v);
error C2783: 'DstT _1_2_2::c_style_cast(SrcT)' : could not deduce template argument for 'DstT'
```
然后你仔细的比较了一下,然后发现 … 模板参数有两个,而参数里面能得到的只有 `SrcT` 一个。结合出错信息看来关键在那个 `DstT` 上。
这个时候,你死马当活马医,把模板参数写完整了:
然后你仔细的比较了一下,然后发现 … 模板参数有两个,而参数里面能得到的只有 `SrcT` 一个。结合出错信息看来关键在那个 `DstT` 上。这个时候,你死马当活马医,把模板参数写完整了:
``` C++
float i = c_style_cast<float, int>(v);
@ -410,7 +408,8 @@ float i = c_style_cast<float, int>(v);
很顺利的通过了。难道C++不能支持让参数推导一部分模板参数吗?
当然是可以的。只不过在部分推导、部分指定的情况下,编译器对模版参数的顺序是有限制的:先写需要指定的模板参数,再把能推导出来的模板参数放在后面。
在这个例子中,能推导出来的是 `SrcT`,需要指定的是 `DstT`。于是你把函数模板写成:
在这个例子中,能推导出来的是 `SrcT`,需要指定的是 `DstT`。把函数模板写成下面这样就可以了:
``` C++
template <typename DstT, typename SrcT> DstT c_style_cast(SrcT v) // 模版参数 DstT 需要人肉指定,放前面。
@ -422,13 +421,99 @@ int v = 0;
float i = c_style_cast<float>(v); // 形象地说DstT会先把你指定的参数吃掉剩下的就交给编译器从函数参数列表中推导啦。
```
###1.3 整型也可是Template参数
## 2. 模板世界的If-Then-Else特化与偏特化
###2.1 类模板的匹配规则:特化与部分特化
###2.2 函数模板的重载、参数匹配、特化与部分特化
###2.3 技巧单元:模板与继承
模板参数除了类型外包括基本类型、结构、类类型等也可以是一个整型数Integral Number。这里的整型数比较宽泛包括布尔、不同位数、有无符号的整型甚至包括指针。我们将整型的模板参数和类型作为模板参数来做一个对比
``` C++
template <typename T> class TemplateWithType;
template <int V> class TemplateWithValue;
```
我想这个时候你也更能理解 `typename` 的意思了:它相当于是模板参数的“类型”,告诉你 `T` 是一个 `typename`
按照C++ Template最初的想法模板不就是为了提供一个类型安全、易于调试的宏吗有类型就够了为什么要引入整型参数呢考虑宏它除了代码替换还有一个作用是作为常数出现。所以整型模板参数最基本的用途也是定义一个常数。例如这段代码的作用
``` C++
template <typename T, int Size> struct Array
{
T data[Size];
};
Array<int, 16> arr;
```
便相当于下面这段代码:
``` C++
class IntArrayWithSize16
{
int data[16]; // int 替换了 T, 16 替换了 Size
};
IntArrayWithSize16 arr;
```
其中有一点要注意的是,因为模板的匹配是在编译的时候完成的,所以实例化模板的时候所使用的参数,也必须要在编译期就能确定。例如以下的例子编译器就会报错:
``` C++
template <int i> class A {};
void foo()
{
int x = 3;
A<5> a; // 正确!
A<x> b; // error C2971: '_1_3::A' : template parameter 'i' : 'x' : a local variable cannot be used as a non-type argument
}
```
因为x不是一个编译期常量所以 `A<x>` 就会告诉你x是一个局部变量不能作为一个模板参数出现。
嗯,这里我们再来写几个相对复杂的例子:
``` C++
template <int i> class A
{
public:
void foo(int)
{
}
};
template <uint8_t a, typename b, void* c> class B {};
template <bool, void (*a)()> class C {};
template <void (A<3>::*a)(int)> class D {};
template <int i> int Add(int a) // 当然也能用于函数模板
{
return a + i;
}
void foo()
{
A<5> a;
B<
7, A<5>, nullptr
> b; // 模板参数可以是一个无符号八位整数,可以是模板生成的类;可以是一个指针。
C<false, &foo> c; // 模板参数可以是一个bool类型的常量甚至可以是一个函数指针。
D<&A<3>::foo> d; // 丧心病狂啊!它还能是一个成员函数指针!
int x = Add<3>(5); // x == 8。因为整型模板参数无法从函数参数获得所以只能是手工指定啦。
}
template <float a> class E {}; // ERROR: 别闹!早说过只能是整数类型的啦!
```
当然除了单纯的用作常数之外整型参数还有一些其它的用途。这些“其它”用途最重要的一点是让类型也可以像整数一样运算。《Modern C++ Design》给我们展示了很多这方面的例子。不过你不用急着去阅读那本天书我们会在做好足够的知识铺垫后让你轻松学会这些招数。
###1.4 模板形式与功能是统一的
第一章走马观花的带着大家复习了一下C++ Template的基本语法形式也解释了包括 `typename` 在内,类/函数模板写法中各个语法元素的含义。形式是功能的外在体现,介绍它们也是为了让大家能理解到,模板之所以写成这种形式是有必要的,而不是语言的垃圾成分。
从下一章开始,我们便进入了更加复杂和丰富的世界:讨论模板的匹配规则。其中有令人望而生畏的特化与偏特化。但是,请相信我们在序言中所提到的:将模板作为一门语言来看待,它会变得有趣而简单。
## 2. 模板元编程基础
###2.1 编程,元编程,模板元编程
###2.2 模板世界的If-Then-Else类模板的特化与偏特化
###2.3 函数模板的重载、参数匹配、特化与部分特化
###2.4 技巧单元:模板与继承
## 3 拿起特化的武器,去写程序吧!
###3.1 利用模板特化规则实现If-Then-Else与Switch-Case