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description to be used by implementations, which we anticipate producing as a separate companion 

paper in the coming months. (A small portion of Section III appears in this paper as Appendix 2, and 

is included here to make this paper better able to stand alone because some of the later examples 

use features, such as move_owner, that are from Section III.) 
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Goal: Eliminate leaks and dangling for */&/iterators/views/ranges 
We want freedom from leaks and dangling – not only for raw pointers and references, but all generalized 

Pointers such as iterators—while staying true to C++ and being adoptable: 

1. We cannot tolerate leaks (failure to free) or dangling (use-after-free). For example, a safe std:: library 

must prevent dangling uses such as auto& bad = vec[0]; vec.push_back(); bad = 42;. 

2. We need the raw efficiency of “just an address” pointers and references especially when used locally on 

the stack as function arguments/parameters, return values, and local variables. For example, a safe std:: 

library cannot just ban returning a reference from vector<T>::operator[]; it must still allow vec[0] 

= 42; to return and write through a raw reference. We also need the flexibility of being able to write 

efficient user-defined iterators, ranges, views, and other indirections, as pure libraries with comparable 

abstraction overheads to today’s STL when used locally on the stack. 

3. We cannot tolerate run-time overheads, such as widespread reliance on tracing garbage collection or 

other run-time instrumentation, as required in languages like Java, C#, D, Go and others where GC is 

mandatory or required to use the full standard library. That would defeat the purpose of passing “just an 

address” because the total cost to the program would include the cost of tracing collection. It also takes 

us out of the realm of C++, where “zero overhead” and “don’t pay for what you don’t use” are table stakes. 

4. We cannot tolerate significant source code impact, such as heavy annotation as required in systems like 

Cyclone and Rust (see Related work). That would defeat both usability/comprehensibility and adoptability. 

5. We cannot tolerate excessive false positives, or flagging as lifetime “errors” code that is not actually 

leaking or dangling. Our goal is that the false positive rate should be kept at under 10% on average over a 

large body of code; that is, 90% of diagnosed errors should be actual or latent errors. 

This paper attempts to efficiently enforce leak-freedom and dangle-freedom statically at build time, including 

for existing C++ source code with little annotation and only simple reorganization. The key insight is that we can 

directly leverage C++’s existing strong notions of: 

(a) scopes and lifetimes, including base and by-value member subobject lifetimes tied to the outer object; 

(b) the compiler’s awareness of private members, including full definitions of all types used by-value; and 

(c) const to identify non-mutating accesses. 

To distinguish owning from non-owning pointers, this design uses the GSL owner<> type alias to distinguish 

owning pointers and views, on which more complex owning types are built. 

Note Because owner<> is a type alias, it can be used to add build-time analysis information without 

disturbing any program types or ABI compatibility. 

The design attempts to statically ensure leak-freedom and dangle-freedom for all indirection types including 

iterators and ranges, with no dynamic checking or reliance on GC, and therefore with identical space and time 

performance while continuing to use existing types including non-owning raw pointers and references. 

Note This paper focuses on lifetimes before and during main. As a future extension we may want to 

additionally consider lifetime errors during static destruction. 

Related work 
Many thoughtful efforts to create a safe systems programming language don’t meet the above requirements: 

 They handle only C, because “C is simpler.” We want a solution for C++; in fact, although the C language 

is simpler than C++, C++ programs are simpler to analyze than C because they contain much richer 
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information, notably through C++’s strong scope and ownership semantics. Several techniques in this 

paper exploit this information and can only be done in C++. 

 They incur run-time overheads. Notably, many approaches rely on pervasive garbage collection, which 

incurs space (heap size) and time (collection pauses) overheads that do not fit C++’s zero-overhead 

“don’t pay for what you don’t use” design goal. 

 They rely on whole-program analysis. This does not scale to real-world code sizes. 

 They require extensive annotation. Excessive annotation is harder to write and usually difficult to reason 

about for the programmer. It also means that extensive necessary information is missing in the source 

code, which is less true for C++ – or that it is present but not used. Too much annotation blocks 

adoption because it is too invasive – it requires too much change before seeing benefits. 

 They invent a new language. This could be tenable if it could be used side-by-side with C++ code with 

seamless interoperation, able to call C++ code directly without syntactic or code overhead, but no safe 

language we know of does this; some do provide good foreign function interfaces but only to C. 

 One or more of the above. 

Although this work is not derived from these efforts, we are aware of many of them. Below we note specific 

related work to compare/contrast approaches. 

Cyclone: Regions 
Cyclone, an extension to C for memory safety, has the concept of growable regions, where a pointer can be 

associated with a region to ensure the pointer outlives the region it points into. Regions can be implicit, but 

often need to be written explicitly in source code. 

The result has advantages but is cumbersome to use. For an extension in this direction to be successful, the 

programmer should almost never be required to write these annotations, especially not on function parameters 

or on stack variables in calling code, and only rarely on library function signatures. Because C++ already has 

strong knowledge of scoped lifetimes for local and member variables, a key insight is that we can simply use the 

name of any scoped variable to denote its implicit lifetime ‘region’ without additional notation. 

Rust and System C# : Borrowing 
Rust, and following it System C#, have the concept of borrowing a pointer or reference to an object and checking 

its lifetime statically. Both features are more general and complex than the one proposed in this paper. 

System C# is built on the C# environment and object model, which carries capabilities and constraints not 

applicable to C++ and so naturally leads to a different design point. C# assumes that objects have lazy GC 

lifetime; we cannot, because that would violate our zero-overhead design constraint. C# objects are uncopyable 

and unscoped by default, and this constrains what can be expressed in the System C# model; instead, C++ 

already has strong knowledge of scoped lifetimes for local and member variables, and has statically known 

deterministic lifetime and destruction by construction and by default (e.g., default RAII vs. C# opt-in using). 

Rust borrowing is part of a more general attempt to deeply enforce strong object ownership semantics 

pervasively, including with a number of built-in pointer types; instead, our design is a simpler feature focused on 

eliminating leaks and dangling only, while enabling similar pointer types (including the std:: smart pointers 

with little or no modification) to still be built as libraries. Also, Rust chooses to treat the creation of a dangling 

pointer as an error; this seems too restrictive, especially because reusing pointer/iterator local variables is 

common and easy to make safe, so we feel that for local variables it is sufficient to diagnose only attempts to 

read (including dereference, copy from, and compare) dangling pointers. 

http://en.wikipedia.org/wiki/Cyclone_(programming_language)
http://cyclone.thelanguage.org/wiki/Cyclone%20for%20C%20Programmers/#Regions
http://rustbyexample.com/borrow.html
http://rustbyexample.com/lifetime/borrow.html
http://www.rust-lang.org/
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I. Approach and principles 
The basic rules we teach the programmer are: 

1. Prefer to allocate heap objects using (owning) make_unique<T>/make_shared<T> or containers. 

2. Otherwise, use owner<T*> for source/layout compatibility with old code. Each non-null owner<> must 

be deleted exactly once, or moved. 

3. Never dereference a null or invalid Pointer. 

4. Never allow an invalid Pointer to escape a function. 

The more detailed lifetime tracking system rules in the rest of this paper describe a means to soundly diagnose 

violations of rules 2, 3, and 4 at build time. 

The approach in this paper is: 

 Local rules, statically enforced. Doing all checks at build time locally within a function avoids run-time 

overhead while also keeping builds scalable. Whole-program guarantees are achieved when building the 

whole program, but without global analysis. 

 Identify Owners, track Pointers. There are two kinds of indirection: Owners own what they point to and 

cannot dangle, and Pointers that do not and can dangle. The rules for Owners aim to ensure they clean 

up accurately and do not leak. The rules for Pointers aim to ensure they do not dangle. 

 Few annotations. Deduction rules let us infer the vast majority of Owner and Pointer types: If a type X 

contains an Owner by value, then X is an Owner; otherwise if a type X is not an Owner and contains a 

Pointer by value, then X is a Pointer. Similarly for function calls, well-chosen default lifetime rules for 

Pointers passed as parameter and return values aim to avoid the need for explicit lifetime annotation for 

the vast majority of functions. 

The principles behind the design are: 

 A Pointer may not outlive the object it points to. The only exception is that local variables of Pointer 

type can be reused; they can dangle as long as they are not read (including dereferenced, copied from, 

or escaped) while dangling, which can be enforced locally. 

 We track the outermost object. For an object held by value as a class member or array element, we 

track the enclosing object or array. For a heap object, we track its Owner. 

 When calling a function, a Pointer passed in as a parameter must be valid for the lifetime of the 

function. This is enforced at the call site by disallowing passing a pointer the callee could invalidate. 

 When calling a function, by default Pointer parameters are independent. This is enforced at the call 

site by disallowing passing a Pointer the callee could invalidate. Occasionally functions do something 

else; these require an annotation. 

 When calling a function, by default a returned Pointer is derived from the Owner and Pointer inputs. 

This is enforced in the callee when separately compiling the called function’s body. Occasionally 

functions do something else; these require an annotation. 

 Annotation is required to express a non-default lifetime or to say “trust me here.” 

II. Informal overview and rationale 
This section is an informal tour of the design and design choices. 

See Section III, Analysis rules (forthcoming this winter, separate document) for a full formal description. 
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Indirections, Owners, and Pointers 
An Indirection is an object that provides indirect access to another object. An Owner is an Indirection that owns 

the object it points to. A Pointer is an Indirection that does not own the object it points to. 

We deduce these qualities for a type X as follows: 

X is a/an… when X… Examples Can dangle  

SharedOwner, shares 
ownership of the 
indirected object 

contains a SharedOwner indirection 
member by value 

shared_ptr, 
raw_shared_owner<non-
owner> 

no 

UniqueOwner, owns 
the indirected object 

is not a SharedOwner and contains a 
UniqueOwner member by value 

containers, unique_ptr, 
owner<non-owner> 

no 

Pointer, doesn’t own 
the indirected object 

is not an Owner and contains a 
Pointer by value 

raw * and &, iterators, ranges, 
views 

yes 

not an Indirection is none of the above struct point { 
  int x; int y; 
}; 

no 

 

Note raw_shared_owner<> is a type alias used as a building block for shared owners. The shared 

ownership model is currently being refined; more detail about shared ownership will be covered in 

future drafts of this paper, and in the upcoming Section III, Analysis rules formal description. 

For example: 

template<class T /*...*/> 

class unique_ptr {   // unique_ptr is a UniqueOwner... 

    owner<T*> p;   // ...because it contains one 

    // ... 

}; 

template<class T /*...*/> 

class shared_ptr {   // shared_ptr is a SharedOwner... 

    raw_shared_owner<T*> p; // ...because it contains one 

    // ... 

}; 

template<class T> 

class container {   // container is a UniqueOwner... 

    unique_ptr<T[]> root;  // ...because it contains one 

public: 

    class iterator {   // iterator is a Pointer... 

        container* cont;  // ...because it contains one 

        // ... 
    }; 

    // ... 

}; 
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class x {   // x is a non-indirection... 

    int i;   // ...because it contains no Indirection 

}; 

Note It is essential to distinguish Owners from Pointers, but this distinction needs to be made explicit 

primarily just for raw * and &; we believe we can infer the rest. 

Lifetime tracking for Pointers 
A Pointer can be made lifetime-safe (e.g., no dangling use) by statically tracking what it points to, notably: 

 the object it currently refers to; or 

 the owner keeping the referred-to object alive. 

For example, given 

auto up = make_unique<int>(42); // Owner, always valid 

int* p = up.get();   // Pointer, can be invalidated 

*p = 42;     // ok 

we want to capture that the pointer p is valid for the lifetime of the integer it refers to, which here is until up is 

destroyed or rebound; the latter happens when a non-const operation is performed on up: 

up = something_else;   // A: invalidates p 

*p = 42;     // ERROR, p referred to an object owned by ‘up’ 

      // before ‘up’ was modified on line A 

A Pointer p that is a local variable may refer to something that it could outlive; this lets the programmer easily 

reuse p later in the local function. Although p could potentially dangle through invalidation, any actual 

invalidation is statically diagnosed, and once p is invalidated it must be destroyed or reassigned before any other 

use. 

In the following examples (all examples showing raw * apply equally to &): 

 green highlights legal uses of valid pointers; 

 x highlights the point at which an invalidation occurs; and 

 red highlights subsequent illegal uses of invalidated pointers (when those are allowed to be formed). 

Points-to set (pset) 
For a Pointer or SharedOwner p, let pset(p) denote what p refers to. 

Let pset (“points-to set”) be a set where each element is one of the following: 

 Meaning p is invalidated if 
obj p currently refers to obj obj is destroyed 
obj’ p currently refers to an object owned 

directly by owner obj 
obj is destroyed or modified by non-const use 

obj’’ p currently refers to an object kept alive 
indirectly (transitively) via owner obj 

obj’ is destroyed or modified by non-const use 

null p is invalid for any use until tested to be 
not equal to the null pointer constant 

used without removing null from the list via a 
not-null branch 
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static p currently refers to a static object, or an 
object owned directly by a const static 
owner object 

valid (until the end of main; may inject additional 
checking after main ends) 

invalid p is already invalid always, it’s already invalid 

 

Note There is no provision for inventing names of “regions.” All lifetimes are tied to existing objects that 

already have names and lifetimes, or in the case of shared references automatically synthesized 

from them. 

p is valid to dereference as long as pset(p) does not contain invalid or null. 

Notes: 

 The set entries are interpreted as “or’d.” For example, pset(p) == {a,null} denotes that p either 

refers to the object a or is null. 

 Any other entries are redundant with invalid, so (anything,invalid) == invalid. 

 More than two ' means the same as two '. For example, {a'''} == {a''}. 

Let KILL(o) mean to invalidate all occurrences of o, o', and o'' in existing psets. For example, given 

pset(p1) = x, pset(p2) = x', and pset(p3) = x'': 

 KILL(x) invalidates all of p1, p2, and p3. 

 KILL(x') invalidates p2 and p3. 

 KILL(x'') invalidates p3. 

1. Aliasing: Taking addresses and dereferencing 
Taking the address of an lvalue x, or of a data member or array element inside x, results in a (non-owning) raw 

pointer whose pset is {x}. A pset entry o' that refers to a data member x.o can be converted to a pset entry 

{x'}. 

Note A pointer to a local, or to a member, etc. can never be an owner. The only way to obtain an 

owner<> is from new. For any variable or other lvalue x, &x is still a T* (not owner<T*>), binding a 

reference to x is still a T& (not an owner<T&>) and you can’t convert a T* to an owner<T*> 

implicitly without forcibly suppressing the lifetime rules. 

Example 1.1: Address of local variable and invalidation 
For example: 

int* p = nullptr;  // pset(p) = {null} 
{ 

    int i = 0; 

    p = &i;   // pset(temp) = {i}  pset(p) = {i} 

    *p = 42;    // ok 

}      // A: KILL(i)  pset(p) = {invalid} 

*p = 1;     // ERROR, p was invalidated when i went out of scope 

     // at line A. Solution: increase i’s lifetime, or 

     // reduce p’s lifetime 
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Note The solution in this and all examples is to change the scope of a local variable: to make the scope of 

a local pointer smaller (e.g., introduce additional pointer locals to separate flow) or to make the 

scope of a local variable bigger (e.g., move the destroyed local further out so the pointer isn’t 

invalidated, or defer the mutation of a local owner). 

Example 1.2: Address of member variable or array element 
Consider members and array elements: 

struct mystruct { int m; } s; 

auto p = &s.m;    // pset(p) = {s} 

int a[100]; 

auto p = &a[0];    // pset(p) = {a} 

Example 1.3: pset(member variable or array element) = pset(enclosing object/array') 
Consider members that are owners: 

struct mystruct { 
    owner<int*> m; 

    void f() { 

        int* p = m;   // pset(p) = {m'} (we are inside mystruct) 

    } 

} s; 

int* p = s.m;     // pset(p) = {s'} (we are outside mystruct) 

owner<int*> a[100]; 

int* p = a[0];    // pset(p) = {a'} 

Note For stack arrays of indirections like a, we could consider additionally tracking each individually. 

Example 1.4: Dereferencing 
Consider dereferencing: 

int   i  = 0;    // non-indirection 

int&  ri = i;    // pset(ri) = {i} 

int*  pi = &i;    // pset(pi) = {i} 

auto  s  = make_shared<int>(0); // Owner 
auto* ps = &s;    // pset(ps) = {s} 

      // Pointer 

int** ppi = &pi;   // pset(ppi) = {pi} 

Naturally therefore, dereferencing a pointer to pointer results pointer whose pset is substituted by the current 

pset of each entry – we are simply copying a pointer, including its pset. For example: 

      // IN:  pset(ppi)=={pi}, pset(pi)=={i} 

int* pi2 = *ppi;   // pset(*ppi) == pset(pi) == {i} 

      // OUT: pset(pi2) = {i} 

int   j = 0; 
pi = &j;     // pset(pi) = {j} – makes **ppi point to j, 

      //                  but only updates pset(pi) 
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      // IN:  pset(ppi)=={pi}, pset(pi)=={j} 

pi2 = *ppi;    // pset(*ppi) == pset(pi) == {j} 

      // OUT: pset(pi2) = {j} 

2. Invalidation by modifying Owners 
Modifying an Owner o invalidates anything whose pset depends on o'. 

Dereferencing a Pointer no that could modify the target object invalidates anything whose pset depends on 

pset(no)' which means to add ' to each owner in the list. For example, if pset(x) = {a',b''}, then 

pset(x)' = {a'',b''}. 

Example 2.1: Invalidation by modifying Owners 
For example: 

auto s = make_shared<int>(0); 

int* pi3 = s.get();   // pset(pi3) = {s'} [more on this later] 

s = make_shared<int>(1);  // A: KILL(s')  pset(pi3) = {invalid} 

*pi3 = 42;    // ERROR, pi3 was invalidated by 

      //        assignment to s on line A 

 

// Chris Hawblitzel’s example 

auto  sv  = make_shared<vector<int>>(100); 

shared_ptr<vector<int>>* sv2 = &sv; // pset(sv2) = {sv} 

vector<int>* vec = &*sv;  // pset(vec) = {sv'} 

int* ptr = &(*sv)[5];  // pset(ptr) = {sv''} 

*ptr = 1;    // ok 

      // track pset of:    sv2     vec     ptr 

      //                   -----   -----   ----- 

      //             IN:   sv      sv'     sv'' 

vec->     // same as “(*vec).”  *vec is sv' 

     push_back(1);   // non-const operation on sv'  KILL(sv'') 

      //            OUT:   sv      sv'     invalid 

*ptr = 3;    // ERROR, invalidated by push_back 

ptr = &(*sv)[5]; // back to previous state to demonstrate an alternative... 

*ptr = 4;    // ok 

      //             IN:   sv      sv'     sv'' 

(*sv2).     // *sv2 is sv 

       reset();   // non-const operation on sv  KILL(sv') 

      //            OUT:   sv      invalid invalid 

vec->push_back(1);   // ERROR, invalidated by reset 

*ptr = 3;    // ERROR, invalidated by reset 

Note how the modification of *sv2 correctly invalidates ptr which was obtained via an unrelated path (sv). 
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Example 2.2: Container of containers 
Here is a variation on Chris Hawblitzel’s example showing a container of containers. 

vector<vector<int>> vv; 

vector<vector<int>>* vv2 = &vv; // pset(vv2) = vv 

vector<int>* vec = &vv[0];  // pset(vec) = vv' 

int* ptr = &(*vec)[5];  // pset(ptr) = vv'' 

*ptr = 0;    // ok 

      // track pset of:    vv2     vec     ptr 

      //                   -----   -----   ----- 

      //             IN:   vv      vv'     vv'' 

vec->     // same as “(*vec).”  pset(*vec) == {vv''} 

     push_back(1);   // KILL(vv'') because non-const operation 

      //            OUT:   vv      vv'     invalid 

*ptr = 1;    // ERROR, invalidated by push_back 

ptr = &(vv[0])[5]; // back to previous state to demonstrate an alternative... 

*ptr = 0;    // ok 

      //             IN:   vv      vv'     vv'' 

vv2->     // same as “(*vv2).”  pset(*vv2) == {vv'} 

     clear();    // KILL(vv') because non-const operation 

      //            OUT:   vv      invalid invalid 

*ptr = 2;    // ERROR, invalidated by clear 

3. Branches 
When a Pointer is assigned to within a branch of an if, then at the end of the if’s scope we concatenate the 

lists at the end of each branch to record the “or’d” list of potential owners. 

Similarly for switch, when a Pointer is assigned to within a path through a switch, then at the end of the 

switch’s scope we concatenate the lists at the end of each break path to record the “or’d” list of potential 

owners. 

Example 3.1: Invalidation in both branches 
Both branches could invalidate. For example: 

int* p = nullptr;   // pset(p) = {null} 

if(cond) { 

    int i = 0; 

    p = &i;    // pset(p) = {i} 

    *p = 42;    // ok 

}      // A: KILL(i)  pset(p) = {invalid} 

else { 

    int j = 1; 

    p = &j;    // pset(p) = j 
    *p = 42;    // ok 

}      // B: KILL(j)  pset(p) = {invalid} 
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// merge  pset(p) = {invalid} 

*p;    // ERROR, p was invalidated when i went out of scope 

     // at line A or j went out of scope at line B. 

     // Solution: increase i’s and j’s lifetimes, or 

     // reduce p’s lifetime 

Example 3.2: Invalidation in one branch 
Invalidation on only one branch allows the possibility of “could be invalidated.” For example: 

int* p = nullptr;   // pset(p) = {null} 
int i = 0; 

if(cond) { 

    p = &i;    // pset(p) = {i} 

    *p = 42;    // ok 

}      // no invalidation 

else { 
    int j = 1; 

    p = &j;    // pset(p) = {j} 

    *p = 42;    // ok 

}      // A: KILL(j)  pset(p) = {invalid} 

// merge  pset(p) = {invalid} 

*p = 1;     // ERROR, p was invalidated when j went out of scope 

     // at line A. Solution: increase j’s lifetime, or 

     // reduce p’s lifetime 

if(cond) *p = 2;  // ERROR, (same diagnostic) even if cond is unchanged 

A dereferenced pointer must be valid on all non-data-dependent control flow paths in the function leading to 

the dereference. 

Note The case if(cond) *p; is still an error because the rules must be portable (they must give the 

same answer for the same code across implementations without requiring implementations to 

perform data-dependent reasoning or be omniscient) and the fix is simple in most cases (increase or 

decrease the lifetime of a specifically named local variable). 

Example 3.3: Invalidation in neither branch 
A pointer can be assigned differently on different branches and still be valid after the branches merge. For 

example: 

int* p = nullptr;  // pset(p) = {null} 

int i = 0; 

{ 

    int j = 1; 

    if(cond) { 

        p = &i;   // pset(p) = {i} 
        *p = 42;   // ok 

    }     // no invalidation 
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    else { 

        p = &j;   // pset(p) = {j} 

        *p = 42;   // ok 
    }     // no invalidation 

    // merge  pset(p) = {i,j} 

    *p = 42;    // ok 

} 

4. Loops 
A loop is treated much like an if, because as with an if there are only two paths to analyze: taken (the loop 

was entered at least once), and not taken (the loop was not entered). We do not do flow-sensitive analysis. 

However, processing a loop can require a second pass: 

 We take one pass through to determine any changes to psets used in the loop (on any path, as usual). 

This determines the full set of psets affected on exit from any loop iteration. 

 (Optional) If the exit set of psets used in the loop is different from the entry set , we do one additional 

pass through the loop source starting with the new set of psets to ensure that a subsequent loop 

iteration cannot rely on an invalidated pset modified during a previous loop iteration. 

Note that this algorithm remains linear – we take at most two passes through the loop body. 

Example 4.1: Loops that do not change psets 
Some loops do not change psets used in the loop. For example: 

p = &a[0];   // pset(p) = {a} 

for( /*...whatever...*/ ) { 

    // ... 

    if( /*...whatever...*/ ) { 

        // ... 

        p = &a[i];  // pset(p) = {a} 

        // ... 

    } 
    // ... 

} 

merge: pset(p) = {a} /*before loop*/  {a} /*after loop body*) = {a} 

*p;    // ok 

In this case, the set of dependencies on input and output did not change and no further action is needed. 

Example 4.2: Loops that do change psets 
If instead p could be pointed to another object during the loop, we would take the exit pset and then parse the 

loop exactly one more time treating them as entry dependencies to ensure the loop body did not rely on an 

invalidatable dependency. For example: 

p = &a[0];   // pset(p) = {a} 

for( /*...whatever...*/ ) { 

    // ... 
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    if( /*...whatever...*/ ) { 

        // ... 

        p = &b[i];  // pset(p) = {b} 
        // ... 

    } 

    // merge  pset(p) = {a,b} 

    // ... 

} 

merge: pset(p) = {a} /*before loop*/  {b} /*in loop body*) = {a,b} 

// that’s different from entry, so parse loop one more time with {a,b}: 

for( /*...whatever...*/ ) { 

    // ... 

    if( /*...whatever...*/ ) { 

        // ... 

        p = &b[i];  // pset(p) = {b} 

        // ... 

    } 

    // merge  pset(p) = {a,b} again/still 

    // ... 

} 

// pset(p) = {a,b} still 

Example 4.3: Loops that invalidate 
If the loop body could invalidate, we get a possibly invalid exit dependency: 

p = &a[0];   // pset(p) = {a} 

for( /*...whatever...*/ ) { 

    *p; 

    p = nullptr;  // A: pset(p) = {null} 

    // ... 

    if( /*...whatever...*/ ) { 

        // ... 

        p = &b[i];  // pset(p) = {b} 

        // ... 

    } 

    // merge  pset(p) = {null,b} 

    // ... 

} 

merge: pset(p) = {a} /*before loop*/  {null,b} /*loop body*/ ={null,a,b} 

// that’s different from entry, so parse loop one more time with {null,a,b}: 

for( /*...whatever...*/ ) { 

    *p;    // ERROR, could be null from assignment to p at 

     // line A in a previous iteration 

    p = nullptr;  // A: pset(p) = {null} 
    // ... 

    if( /*...whatever...*/ ) { 



Page 15 of 45 
 

 

        // ... 

        p = &b[i];  // pset(p) = {b} 

        // ... 
    } 

    // merge  pset(p) = {null,b} 

    // ... 

} 

// pset(p) = {null,a,b} still 

Example 4.4: Loops that allocate 
Some loop bodies allocate: 

p = &a[0];   // pset(p) = {a} 

bool must_delete = false; 

for( /*...whatever...*/ ) { 

    // ... 
    if( /*...whatever...*/ ) { 

        // ... 

        p = new A   // A: pset(p) = {temp'} 

                 ;         // KILL(temp)  pset(p) = {invalid} 

     // ERROR: no delete of owner<> returned from new 

        must_delete = true; 

        // ... 
    } 

    // ... 

} 

if(p) *p = 42;   // ERROR, invalidated by assignment to p on line A 

     // (note conservative rule, because we don’t accept 

     // owning raw * unless annotated owner<> 

if(must_delete) 

    delete p;   // ERROR, delete of non-owner<> is not lifetime-safe 

Solution: Have more than one pointer. In this case a unique_ptr is appropriate and replaces the explicit flag, 

so we net out to zero additional variables (and less code since we can omit the explicit fragile delete check). 

p = &a[0];   // pset(p) = {a} 

unique_ptr<A> up;  // initially null 

for( /*...whatever...*/ ) { 

    // ... 

    if( /*...whatever...*/ ) { 
        // ... 

        p = (up = new A).get(); // ok, pset(p) = {up'} 

        // ... 

    } 

    // merge: pset(p) = {a, up'} 

    // ... 
} 
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merge: pset(p) = {a} /*before loop*/  {a,up'} /*loop body*/ = {a,up'} 

// that’s different from entry, so parse loop one more time with {a,up'}: 

for( /*...whatever...*/ ) { 

    // ... 

    if( /*...whatever...*/ ) { 
        // ... 

        p = (up = new A).get(); // ok, pset(p) = {up'} 

        // ... 

    } 

    // merge: pset(p) = {a,up'} 

    // ... 

} 

// pset(p) = {a,up'} still 

if(p) *p = 42;   // ok 

5. null 
When a branch can be entered only on success of an explicit test for p being not the null pointer constant 

(regardless of the complexity of the conditional expression), we remove the null dependency in that branch. 

Determining whether a particular conditional subexpression is required to enter a branch is done “as if” by the 

conditional expression were rewritten as follows, applied recursively until fully simplified: 

 A branch of the form if(a && b){…} is treated as if(a){ if(b){…}}. 

 A branch of the form if(a || b){…} is treated as if(a){ if(b){} else{…}}. 

 A conditional expression involving a constexpr function does not evaluate the constexpr function 

unless that evaluation is required by the language (i.e., appears in a constexpr context). 

 A conditional expression of the form arr[i] for an array arr is treated as testing pset(arr). 

Example 5.1: Removing null from a pset to dereference successfully 
For example, if a Pointer might be null, code can test for non-null and then use the pointer: 

int* p = nullptr;  // A: pset(p) = {null} 

int i = 0; 

if(cond) {  

    p = &i;   // pset(p) = {i} 

}  

// merge: pset(p) = {null,i} 

*p = 42;    // ERROR, p could be null from line A 

if(p) {    // remove null in this branch  pset(p) = {i} 

    *p = 42;   // ok, pset(p) == {i} 

} 

// here, outside the null testing branch, pset(p) is still {null,i} 
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Example 5.2: Replacing null in a pset with a valid object 
For example, if a Pointer might be null, code can test for null and replace it with non-null. Here “…” means any 

other set contents: 

int i = 0; 

p = /*something*/;   // pset(p) = {null, ...} 

if(!p) {    // in this branch, pset(p) = {null} 

    p = i;    // pset(p) = {i} 

} 

// NOTE: in implicit “else”, pset(p) = {...} 

// merge pset(p) = {i}  {...} 

p->foo();    // ok, pset(p) does not contain null 

6. throw and catch 

Example 6.1: catch 
A try block is treated much like any other block, but a catch block is treated specially. Without statically 

knowing where the exception was raised, we treat the catch block as if it could have been entered from every 

point in the try block where an exception could have been raised. Thus we record all potential invalidations in 

the try block (as any of them may have executed) and remove any revalidations in the try block (as potentially 

none of them have executed.) 

Note Asynchronous exceptions are orthogonal to this question. 

This case is a clear win and we expect this to catch many mistakes. 

int i = 0; 

int *p1 = &i, *p2 = p1; 

try {  

    int j = 0; 

    p1 = &j;  // A: pset(p1) = {j} 

    f(); 
    p1 = &i;  // pset(p1) = {i} 

    g(); 

    p2 = &j;  // B: pset(p2) = {j} 

}     // KILL(j)  pset(p2) = {invalid} in normal control flow 

catch(...) {  // merge try’s invalidations, ignore try’s revalidations 

    *p1 = 42;  // ERROR, invalidated by assignment to p1 on line A 

    *p2 = 42;  // ERROR, invalidated by assignment to p2 on line B 

} 

Example 6.2: throw 
Unlike a return, the type of an thrown object cannot be carried through function signatures. Therefore, do not 

throw a Pointer with lifetime other than static. For example: 

static gi = 0; 
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void f() { 

    int i = 0; 

    throw &i;  // ERROR 
    throw &gi;  // OK 

} 

7. Calling functions: Arguments and in/inout parameters 
By default, objects and indirections passed to a function are assumed to be independent. This means that: 

 In the function body, by default a Pointer parameter param is assumed to be valid for the duration of 

the function call and not depend on any other parameter, so at the start of the function pset(param) 

= param (its own lifetime) only. 

 At a call site, by default passing a Pointer to a function requires that the argument’s pset not include 

anything that could be invalidated by the function. 

Example 7.1: Passing indirections 
For example: 

// In function bodies 

// 

void f(int* p) { 
    // pset(p) = {p} 

    p = something_else; 

    // ... now pset(p) something else 

    // ... 

} 

void g(shared_ptr<int>& s, int* p); 
    // pset(p) = {p} 

    s = something_else;  // KILL(s')  no local effect, does not kill p 

    // pset(p) = {p}, still 

    // ... 

} 

 

// At call sites 
// 

int gi = 0; 

shared_ptr<int> gsp = make_shared<int>(); 

int main() { 

    // passing global and local objects 

    f(&gi);   // ok, pset(arg) == {gi}, and gi outlives the call 

    int i = 0; 

    f(&i);   // ok, pset(arg) == {i}, and i outlives the call 

    f(gsp.get()); // ERROR, pset(arg) == {gsp'}, and gsp is mutatable by f 

    auto sp = gsp; 
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    f(sp.get()); // ok, pset(arg) == {sp'}, and sp is not mutatable by f 

    g(sp, sp.get()); // ERROR, pset(arg2) == {sp'}, and sp is mutatable by f 

    g(gsp, sp.get()); // ok, pset(arg2) == {sp'}, and sp is not mutatable by f 
} 

Note This diagnoses the #1 correctness error using smart pointers, and with a clear message highlighting 

the key variable names. (The #1 performance error using smart pointers is covered under the 

foundation coding guidelines profile, which diagnoses needlessly passing smart pointer copies.) 

Example 7.2: Explicitly overriding defaults 
Sometimes you want to override the defaults. For example, consider two standard container member functions: 

 The insert-with-hint insert(iter,t) assumes that the iterator is into this container, which is not 

the default (and would not be allowed by the earlier rule that iter could be invalidated by this 

insert). We can express this using [[lifetime(this)]]. 

 The range-based insert insert(iter1,iter2) assumes that the passed iterators are not into this 

container, which is the default. It also assumes that iter1 and iter2 have the same lifetime, which is 

not the default; we can express this using [[lifetime(iter1)]]. 

Result: 

template<class Key, class T, /*...etc...*/> 

class map { 

    iterator insert(const_iterator pos [[lifetime(this)]], 

                    const value_type&); 

    template <class InputIterator> 

    void insert(InputIterator first, 

                InputIterator last [[lifetime(first)]]); 

    // ... more insert overloads and other functions ... 

}; 

map<int,string> m = {{1,"one"}, {2,"two"}}, m2; 

m.insert(m2.begin(), {3,"three"}); // ERROR, pset(m2.begin()) != {m} 

m.insert(m.begin(), {3,"three"}); // ok, pset(m.begin()) == {m} 

m.insert(m.begin(), m.end()));  // ERROR, psets=={m'}, and m is mutatable 

       // by m.insert [per earlier rule] 

m.insert(m2.begin(), m.end()));  // ERROR, psets are not equal 

m.insert(m2.begin(), m2.end());  // ok, pset == {m2'}, and m2 is not 
       // mutatable by m.insert 

Note This statically diagnoses several common classes of STL iterator bugs. 

8. Calling functions: Return values and out/inout parameters 
The goal of these defaults is to minimize total annotation, and to be sound when both the caller and callee are  

compiled separately under the lifetime profile. Any default lifetime that is incorrect will be diagnosed when 

compiling the callee body. 
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At the call site, when calling a function that produces (return value or out/inout parameter) a Pointer called ret, 

by default pset(ret) is derived from the function’s Owner and Pointer arguments as in the following table. 

If the only Owner arguments are passed by && or non-const&, then treat all owner const& parameters as-if 

they were non-const&. 

For each argument arg that matches one of the cases below, concatenate one entry into pset(ret) as shown; 

if after thus processing the arguments pset(ret) is empty, then pset(ret) = {static}. 

Notes: 

 owner const& arguments are intentionally excluded by default. They are asking for rvalues. 

 owner&& arguments are intentionally excluded always. They are begging for rvalues. 

 “Indeterminate” means that arg is a this pointer in an overridable virtual function (neither the 

function nor the class is final) in a class that is not a SharedOwner. This is considered indeterminate 

because a further-derived class could change the indirection category of the type. 

 pset(arg)’ means to add one ’ to every Owner in the set. For example, {a,b’,c’’,null}’ == 

{a’,b’’,c’’,null}. 

arg is a Passed by pset(ret) = Examples 

SharedOwner 
of 
UniqueOwner 

value, & or && 

* 

pset(arg)' 

pset(*arg)' 

int* f(shared_ptr<vector<int>>&); 

int* f(shared_ptr<vector<int>>*); 

SharedOwner 
of other 

value, & or && 

* 

pset(arg) 

pset(*arg) 

int* f(shared_ptr<X>, shared_ptr<Y>&); 

int* f(gc_ptr<int>*); 

UniqueOwner 
of 
UniqueOwner 

value, const&, && 

non-const & 

* 

{} 

arg'' 

(*arg)'' 

int* f(vector<vector<int>>); 

int* f(vector<vector<int>>&); 

int* f(set<int>*); 

UniqueOwner 
of other 

value, const&, && 

non-const & 

* 

{} 

arg' 

(*arg)' 

int* f(vector<int>, const string&); 

int* f(unique_ptr<int>&, string&); 

int* f(set<int>*); 

other Pointer value, & or && 

* 

pset(arg) 

pset(*arg) 

int* f(int*, int*&); 

int* f(int**); 

indeterminate * (that is, this) {} struct base { 
    virtual int* f(); 
}; 

 

Example 8.1: Owners 
For example, consider shared_ptr<int>::get(), where the only argument is the this pointer to an owner: 

auto sp = make_shared<int>(0); 

int* p = sp.get();  // pset(p) = pset(sp.get()) == {sp'} 

*p = 42;    // ok 

sp = make_shared<int>(1); // KILL(sp')  pset(p) = {invalid} 
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*p = 42;    // ERROR 

Example 8.2: std::min and std::max 
Consider std::min, which returns one of its input references. (std::max is handled similarly.) 

template<class T>    // if T is not an Owner 

const T& min(const T& a, const T& b) { // return pset = pset(a)  pset(b) 

    return a<b 

           ? a  // ok, pset(a) is within pset(a)pset(b) 

           : b; // ok, pset(b) is within pset(a)pset(b) 

} 

 
template<class T> int* f(const T&); 

auto sp = make_shared<vector<int>>(100); 

f(sp);   // pass:   shared_ptr<vector<int>>& with pset == {sp} 

    // return: pset = {sp'} 

f(*sp);   // pass:   vector<int>& with pset == {*sp} 

    // return: pset = {sp''} 

f(sp->begin()); // pass:   vector<int>::iterator& with pset == {sp''} 

    // return: pset = {sp''} 

f((*sp)[5]);  // pass:   int& with pset == {sp''} 

    // return: pset = {sp''} 

In calling code, this prevents known lifetime errors, including improving existing C++ code. For example, here is a 

problem reported by a number of people including Andrei Alexandrescu: Because std::min returns a 

reference, if a call to min(x,y) might change under maintenance to min(x,y+1) we could get a dangling 

reference if min returns a reference to y+1, which would be invalidated when the temporary is destroyed after 

the end of the call expression in which it appears: 

int main() { 

    auto x=10, y=2; 

    auto& good = min(x,y);  // ok, pset(good) == {x,y} 

    cout << good;   // ok, 2 

    auto& bad = min(x,y+1)  // A: IN: pset(arg1)=={x}, 
      //        pset(arg2)=={temp(y+1)} 

      //    min() returns temp2 

      //    OUT: pset(temp2) = {x,temp} 

         ; //    KILL(temp)  pset(temp2) = {invalid} 

         // ERROR, initializing bad as invalid 

    cout << bad;   // ERROR, bad initialized as invalid on line A 

} 

In safe code, just attempting to create the bad reference is a build-time error. The reference is unusable and 

cannot be rebound to make it usable; there is no reason to allow this. 

In normal C++, this code compiles but has undefined behavior. 
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Note In practice, on the three major compilers (gcc, VC++, clang) this code does not crash and appears to 

work. That’s because one manifestation of “undefined behavior” can be “happens to do what you 

expect.” Nevertheless, this is undefined and its appearance of working makes the error more 

pernicious, not less so; slightly different examples will visibly break. 

If this code had instead used max instead of min, therefore returning a reference to the first argument, there 

would have been no undefined behavior in normal C++ but these rules (I think rightly) would still reject it as 

statically unsound, having data-dependent safety. 

Example 8.3: Explicitly overriding defaults 
These defaults are useful and handle most cases, including std::min, std::move, std::forward, standard 

containers’ member functions, standard algorithms, Meyers Singletons, and more. In cases where the function 

does something different by returning a Pointer to an object accessed on another path, such as heap objects 

accessed indirectly from static roots and new heap objects, explicitly write the pset using 

[[lifetime(pset)]]. (See examples later in the paper, notably 8.2 and 10.) 

Example 8.4: Return Pointer that must be invalid (e.g., to local) 
In a function body, it is a lifetime error to return a pointer that must be invalid, either as a return value or 

through an inout/out parameter. 

int* f() { 

    int i = 0; 

    return &i;  // pset(&i) = {i}, then KILL(i)  pset(ret) = {invalid} 

    // ERROR, cannot convert pset(ret)=invalid to () 

} 

void g(int*& pi) { 

    int i = 0; 

    pi = &i;  // pset(pi) = {i} 

}    // KILL(i)  pset(pi) = {invalid} 

    // ERROR, pi is non-const& so pset(pi) must be {} on exit, 

    // and cannot convert {invalid} to {} 

Example 8.5: Return indirection that may be invalid (e.g., to local) 
In a function body, it is a lifetime error to return a pointer that could be invalid, either as a return value or 

through an inout/out parameter. 

int* f(int* pi) { 

    int i = 0; 

    return cond : pi : &i; // pset(expr)={pi,i}, KILL(i)  pset(expr)={invalid} 

      // ERROR, cannot convert pset(ret)={invalid} to {} 

} 

void g(int*& pi, int* pi2) { 

    int i = 0; 

    pi = cond ? pi2 : &i;  

}     // KILL(i)  pset(pi) = {invalid} 

     // ERROR, pi is non-const& so pset(pi) must be {} on 

     // exit, and cannot convert invalid to {} 



Page 23 of 45 
 

 

Example 8.6: Calling a function that returns an indirection 
int* f();   // pset(ret) = {static} 

int main() { 

    int* p = f();   // pset(p) = {static} 

    *p = 42;    // ok 

} 

Example 8.7: Indirection returned from an owner member 
Copying a non-owner indirection object from an owner member mp implicitly carries with it pset = mp'. 

class smart_ptr_to_int { // *this is an owner because ... 

    owner<int*> p;  // ... it contains something known to be an owner 

public: 

    int* get() const { // pset(ret) = {(*this)'}  (this is a * to owner) 

        return p;  // pset(p) = {p'} 

    } 

    // ... 

}; 

smart_ptr_to_int sp = /*...*/; 

int* p = sp.get();   // pset(p) = {sp'} 
*p = 42;    // ok 

sp = /*...*/;    // KILL(sp')  pset(p) = {invalid} 

*p = 43;    // ERROR, p was invalidated by assignment to sp on 

     // line A (non-const operation on sp) 

Note One operation that could invalidate the pointer and that can be called on a const pointer is 

delete. Therefore, in the lifetime profile, delete of a const pointer is not permitted except in 

the body of a destructor and then only if the pointer is a data member (and necessarily an owner 

data member per the other rules). 

Example 8.8: Owner of Pointer(s) 
An owner of a non-owner has a pset, which applies to all the owned non-owners. 

When the contained non-owner is assigned: 

 If the owner o owns a single non-owner, such as with unique_ptr<int*>, the pset is replaced: 

pset(o) = lifetime. 

 If the owner o potentially owns more than one non-owner, such as with vector<int*>, the pset is 

extended: pset(o) = pset(o)  lifetime. 

When the owner is assigned, the pset is replaced. 

For example: 

vector<int*> v; 

void f() { 
    int i; 

    v.push_back(&i);      // ERROR, v outlives {i} 
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} 

Example 8.9: Local Owner of Pointers 
Consider this example: 

void compute1(vector<T>& v) 

{ 

     T* buf = new T*[10];  // bad style, but not uncommon 
     // fill buf with pointers into v 

     delete buf; 

} 

// this is not a problem because buf doesn't escape 

Correct. The only required change would be that buf’s type must be owner<array_view<T>>. 

Elaborated example: 

void compute1(vector<T>& v) 
{ 

     owner<array_view<T>> buf = new T*[10]; // Owner of Pointers 

     buf[0] = &v[0];   // ok, pset(buf) += pset(&v[0]) == v' 

     delete[] buf; 

} 

Example 8.10: Return Owner<> of Pointers 
Consider this example: 

T** compute1(vector<T>& v) 

{ 
     T* buf = new T*[10];  // bad style, but not uncommon 

     // fill buf with pointers into v 

     return buf; 

} 

// this violates the "raw pointers do not own" rule, but doesn't 

// actually leak pointers because buf's pointers are into v 

Yes, both buf and the returned value must be owner<array_view<T>>. 

Elaborated example: 

owner<array_view<T>> compute1(vector<T>& v) // pset(ret) = {unref(v)'} by 

default 

{ 

     owner<array_view<T*>> buf = new T*[10]; // Owner of Pointers 

     buf[0] = &v[0];   // ok, pset(buf) += pset(&v[0]) == v' 

     return buf;   // ok, every entry in pset promotes 

} 

Example 8.11: Return smart Owner of Pointers 
Consider this example: 

// Cleaner: 
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unique_ptr<T*> compute1(vector<T>& v) 

{ 

     auto buf = make_unique<T*[10]>(); // or whatever 
     // fill buf with pointers into v 

     return buf; 

} 

Yes, this works as written. Elaborated example: 

unique_ptr<T*> compute1(vector<T>& v) // pset(ret) = {v'} by default 

{ 

     auto buf = make_unique<T*[10]>(); // Owner of Pointers 

     buf[0] = &v[0];   // ok, pset(buf) += pset(&v[0]) == v' 

     return buf;   // ok, every entry in pset promotes 

} 

9. Transferring ownership 
Analogously with assignment from Pointers: When an Owner o1 is move-constructed or move-assigned to 

another Owner o2 (of the same type), the ownership moves from o1 to o2, and so in all psets replace o1 with 

o2. 

vector<int> v1(100); 

int* pi = &v1[0];   // pset(pi) = {v1'} 

auto v2 = std::move(v1);  // pset(pi) = {v2'} – note, no KILLs here 

{ 
owning<int*> o1 = new int(0); 

pi = *o1;    // pset(pi) = {o1'} 

auto o2 = release_owner(o1); // pset(pi) = {o2'} – note, no KILLs here 

delete o2;    // ok, must delete o2... 

} // ... and this is also ok, need not (and may not) delete o1 

10. Lifetime-const 
In some cases, we will need to tag non-const member functions that are logically const for the purpose of 

lifetime invalidation. 

For example, given a vector<T> consider two non-const member functions, one of which invalidates 

pointers/iterators into the vector and one of which doesn’t: 

void push_back(const T& t) {    // can move storage 
    if (/*need to grow*/) { 

        // ... 

        data = /* some new buffer, and copy old data */; 

        // ... 

    } 

    // ... 
} 

T& operator[](size_t n) [[lifetime(const)]] { // won’t move storage 

    return data[n]; 

} 
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We benefit by annotating operator[] to treat it as though it were const, because even though it is a non-

const operation, operator[] does not perform non-const operations on its structure – and therefore does 

not invalidate references previously obtained from operator[] (or equivalently front(), etc.). If this is 

communicated to the caller, then a caller that has a Pointer int* pi referring to an int inside a vector<int> 

v can know that calling v[0] does not invalidate  pi, while calling v.push_back(42); does invalidate pi. 

Note It is debatable whether STL made the right design decision in not distinguishing structure from 

contents – that is, failing to treat the container’s own structure distinctly from the contained 

elements. But STL isn’t alone here, and many C++ libraries have followed such a convention; the 

lifetime annotation provides a way to tactically add the arguably “missing” const. The STL might be 

a better library if it treated vector<int> and vector<const int> distinctly; that is, the 

constness of the elements is distinct from the constness of the container. Then vector would mark 

operator[] as a const function; and a vector<int>::iterator could be allowed to convert 

to a vector<const int>::iterator, avoiding the need for the const_iterator oddity. 

Something to think about for STLv2. 

 Granted, this complaint does not apply equally to map, which we consider next. 

Similarly, given a node-based container map<T>, consider two non-const member functions, one of which 

invalidates pointers/iterators into the map and one of which doesn’t: 

/*…*/ erase(const T& t) {     // can invalidate 

    // ... 

} 

/*…*/ insert(const T& t) [[lifetime(const)]] { // won’t invalidate 

    return data[n]; 

} 

Note This is not the same structure-vs-contents situation as vector, but rather a node-based lifetime 

semantics situation. However, the approach works the same way for lifetime invalidation purposes; 

by saying “consider insert as a const operation for lifetime invalidation purposes” we express the 

correct semantics, that erase is a function that should be assumed to invalidate pointers and 

iterators into the container, but insert is not. 

 In both cases, we will flag potential false positives: For vector, when push_back does not really 

invalidate because of a careful earlier reserve we diagnose invalidation anyway, but such code is 

arguably has data-dependent correctness so we feel correct in diagnosing it. For map, when erase 

removes only one node (or a few) we diagnose invalidation of all pointers and iterators into the 

map, not just ones to those nodes; this is a stronger conservatism and source of false positives. 

Appendix 1: Applied examples and experiments 

Additional examples 

Local and returned pointers 
Consider this example: 

int* p1; 
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int* f(int* p3, int i) 

{ 

    int* p2 = &i; 
    switch(i) { 

    case 1:    return p1; 

    case 2:    return p2;  // BAD 

    case 3:    return p3; 

    default:   return nullptr; // a different problem 

} 
     

int* g() 

{ 

    int x; 

    auto p1 = f(&x,1);  // global 

    auto p2 = f(&x,2);  // BAD 
    auto p3 = f(&x,3);  // local 

} 

Correct. Here’s how the example is processed: 

int* p1;     // pset(p1) is required to be always {static} 

int* f(int* p, int i)  // pset(ret) == pset(p) 

{ 

    int* p2 = &i;   // ok, pset(p2) = {i} 

    switch(i) { 

    case 1:    return p1;  // ok, {static}  pset(p) (the default rules 

      //     assume f got the pointer from p) 

    case 2:    return p2;  // ERROR, pset(ret) / {i} 

    case 3:    return p;  // ok, pset(p) (what the default rules assume) 
    default:   return nullptr; // a different problem 

} 

Getting sneaky 
Consider this example: 

// This is getting sneaky 

int* glob; 

template<class T> 

void steal(T x) 

{ 
     glob = x(); 

} 

void f() 

{ 

     int i; 

     steal([&]{ return &i; }); 
} 
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int main() 

{ 

     f(); 
     *glob = 7; 

} 

That’s sneaky all right.  

Prelude: Recall how lambdas are generated. Given: 

int i; 

steal([&]{ return &i; }); 

The code with the generated lambda is essentially: 

int i; 

struct __lambda { 

    int& __i; 

    __lambda(int& i) :__i{i} {} // store reference 
    auto operator(){ return &__i; } 

}; 

steal(__lambda{i}); 

With that in hand, first consider f: The lambda just generates a class with an int& member; this makes the 

lambda a Pointer. As we said earlier for array<T>::iterator, this has two effects: First, it allows conversion 

from the reference parameter’s lifetime to the member variable, and it explicitly lets us infer that the lambda 

constructed using this constructor is valid for the lifetime of i, so the iterator instance produced has validity 

pset(*this) = pset(i). 

void f() 

{ 

     int i; 

     steal([&]    // ok, pset(lambda) = {i} 

           { return &i; }); // ok, return &member, so pset(ret)={i} 

} 

However, steal contains an error, because the only legal assignment to glob would be something with a pset 

known to be {static}. 

template<class T> 
void steal(T x) 

{ 

     glob = x();   // ERROR, pset(x()) is not {static} 

} 

Return collection of pointers 
Consider this example: 

vector<int*> find_all(vector<int>& v, int i); 

    // return pointers to elemnts of v with the value i 

int* pp; 
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int* f() 

{ 

    vector<int> v = {1,2,3,4}; 
    auto r = find_all(v,3); // this is fine 

    pp = r[0];    // this is not fine 

    return r[0];   // this is not fine 

} 

vector<int> vv = {1,2,3,4}; 

int* f() 
{ 

    auto r = find_all(vv,3); // this is fine 

    pp = r[0];    // this is fine 

    return r[0];   // this is fine 

} 

Yes, except for two corrections, both of which we can enforce: 

 find_all should take the vector by reference. 

 The second-last line is incorrect because pp could be invalidated by modifying vv. It would be legal if vv 

were const. 

Here is an elaborated example: 

vector<int*> find_all(vector<int> v&, int i) { // pset(ret) = {v'} by default 

    vector<int*> ret; 

    for (auto& e : v) 

        if (e == i) 

            ret.push_back(&e); // pset(ret) += {v'} 

    return ret;   // ok, psets match 

} 

int* pp; 

int* f()     // pset(ret) = {static} by default 

{ 
    vector<int> v = {1,2,3,4}; 

    auto r = find_all(v,3); // ok, pset(r) = {v'} 

    pp = r[0];    // ERROR, can’t expand {v'} to {static} 

    return r[0];   // ERROR, can’t expand {v'} to {static} 

} 

vector<int> vv = {1,2,3,4}; 

int* f()     // pset(ret) = {static} by default 

{ 

    auto r = find_all(vv,3); // ok, pset(r) = {vv'} 

    pp = r[0];    // ERROR, can’t expand {vv'} to {static} 

    return r[0];   // ERROR, can’t expand {vv'} to {static} 

} 

But add const and the second part works: 
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const vector<int> cv = {1,2,3,4}; 

const int* f()    // pset(ret) = {static} by default 

{ 
    auto r = find_all(cv,3); // ok, pset(r) = {cv'} 

    pp = r[0];    // ok, {cv'} + const cv can expand to {static} 

    return r[0];   // ok, {cv'} + const cv can expand to {static} 

} 

Implementing and using std::unique_ptr for single objects 
The following is intended to be a completely lifetime-safe implementation of unique_ptr. For exposition, 

we omit machinery like the deleter which can also be expressed in a safe way. 

Note For convenience, this code uses the move_owner and release_owner helpers, but these are not 

required. The code could with equal validity perform the naked deleting/assignment/null-setting 

suboperations explicitly. 

Declaration and data 
The class begins as usual, using owner to declare the ownership of the pointer. 

template<class T> 

class unique_ptr { 

    owner<T*> p = nullptr; 

Dereferencing: get, operator->, and operator* 
The dereferencing operations just work. 

public: 

    T* get() const {   // pset(ret) = {(*this)'} (by default) 
        return p;   // pset(p) = {(*this)'} (because it’s a member) 

    } 

    T* operator->() const { // pset(ret) = {(*this)'} 

        Expects(p != nullptr); 

        return p;   // pset(p) = {(*this)'} 

    } 

    T& operator*() const {  // pset(ret) = {(*this)'} 

        Expects(p != nullptr); 

        return *p;   // pset(p) = {(*this)'} 

    } 

Aside: Potential new implicit conversion operator T* 
Note that this means that smart pointers can now safely offer an implicit conversion operator T*(). It is a 

well-known (and often lamented) problem that smart pointers like unique_ptr<T> must not offer implicit 

conversions to T*, which is otherwise desirable for usability and substitutability, for two reasons that no longer 

apply in safe code: 

 First, the lifetime issue: In unsafe code it is too easy to get a pointer without realizing we must take 

care that it does not dangle. This is not a problem under this proposal in lifetime-safe code, because 
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we now track lifetimes by default and can prevent use of a dangling pointer, and so such incorrect uses 

would fail to build with a clear error message. 

 Second, the bounds arithmetic issue: In unsafe code it is too easy for unintended and incorrect code to 

accidentally work when smartptr converts implicitly to T*. For example, the code smartptr + 42 

could convert smartptr to T* and then invoke the built-in + that takes T* and int, which was 

unintended, logically wrong, and potentially seriously wrong because it incidentally produces a wild 

pointer which in a slightly more complex example could further be silently dereferenced (e.g., 

*smartptr + 42 vs. *(smartptr + 42)). However, this is not a problem in bounds-safe code 

because pointer arithmetic is banned in the bounds profile, and so such incorrect uses would fail to 

build with a clear error message. 

The only drawback to taking advantage of this is that a smart pointer that relies on this safety to provide an 

implicit conversion to T* will be unsafe if called from non-bounds-safe or non-lifetime-safe code. Therefore the 

operator must be marked as available only when both the bounds and lifetime profiles are in effect. 

So we could consider inserting the new convenience function: 

    operator T*() const [[enable_if_profiles(lifetime && bounds)]] { 

        return p; 

    } 

Notes This would be a departure from profiles being strictly subsets, as this would be an extension 

available only under the listed profiles. The spelling of enable_if_profiles is bikesheddable. 

 However, note how elegantly this matches the concept mentioned earlier in the owner<> section 

that an owner<T*> should be thought of as being an unencapsulated unique_ptr<T>: The 

lifetime safety rules do permit an implicit conversion from an owner<T*> object named o to a 

non-owner T* with pset o'. That operation is the equivalent of the above. 

Special member functions: Construction, destruction, copying, and moving 
Consider construction and destruction: 

    unique_ptr() = default; 

    ~unique_ptr() { delete p; } 

This works because p is an owner<T*>. Note that the delete is impossible to forget: Without it, ~unique_ptr 

would fail to build with the error that the owner<T*> p was not deleted. 

Note On the other hand, if the type of p were instead a plain T*, the delete would be an error because 

explicit delete is not permitted in lifetime-safe code. 

Copying is disabled and uninteresting: 

    unique_ptr(unique_ptr&) = delete; 

    unique_ptr& operator=(unique_ptr&) = delete; 

Let’s finish the special member functions by considering the move operations, which manually manipulate 

lifetimes but do so in a safe and checkable way. 

    unique_ptr(unique_ptr&& other) 
      : p{ release_owner(other.p) } 
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    { } 

    unique_ptr& operator=(unique_ptr&& other) { 

        p = move_owner(p, other.p); 
    } 

reset and release 
Next, consider reset, which adopts a previously-owning raw pointer. This is inherently a lifetime-unsafe 

“trust me” function for two reasons: first, because owning raw pointers are always lifetime-unsafe; and 

second, because allowing implicit adoption would enable adopting the same raw pointer by multiple 

unique_ptrs which is lifetime-unsafe (e.g., would lead to double delete). If we try to write the usual 

lifetime-unsafe code, we’ll get an error – the compiler is telling us that this is an unsafe operation: 

    // BAD naïve implementation, build time errors 

    void reset(T* ptr = nullptr) { 

        T* old = p;   // pset(old) = {p'} 

        p = ptr;   // KILL(p)  pset(old) = {invalid} 

      // ERROR, p outlives ptr 

        delete old;   // ERROR, old invalid, and delete of non-owner 

    } 

We could just suppress the lifetime profile on these two lines, but the correct solution is just to annotate that 

the parameter is an owner, because we are going to take ownership: Not only will this will prevent lifetime-

safe calling code to pass the same pointer to reset on two unique_ptrs, which is desirable because having 

two unique_ptrs adopt the same object would be wrong, but it makes the body just work (though for 

convenience we’ll use move_owner): 

    // Corrected implementation 

    void reset(owner<T*> ptr = nullptr) { 

        move_owner(p, ptr); 
    } 

Note Again this is a parallel with owner<T*> which does not allow assignment from a (non-owning) T*. 

The constructor from T* does the same: 

    unique_ptr(owner<T*> ptr) 

      : p{ release_owner(ptr) } 

    { } 

Similar reasoning applies to release: We annotate the return type with owner<>, which does not change the 

type, and this not only correctly documents that ownership is being moved to the caller, but it removes the need 

to suppress lifetime safety rules. 

    owner<T*> release() { 
        return release_owner(p); 

    } 

swap 
Finally, consider swap. 
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    void swap(unique_ptr& other) { 

        std::swap(p, other.p); 

    } 

Example: From StackOverflow 
An hour before I was about to add a usage example here of how the above rules and implementation of 

unique_ptr detect lifetime errors, the following was posted on StackOverflow, so let’s use this example. 

unique_ptr<A> myFun() 

{ 

    unique_ptr<A> pa(new A()); 
    return pa; 

} 

const A& rA = *myFun(); 

This code compiles but rA contains garbage. Can someone explain to me why is this code invalid? 

Under this lifetime profile, the rules mechanically diagnose the problem and give the answer. The convention 

in this paper is to diagnose the problem at the point the code attempts to use the invalidated local pointer or 

reference, and so we have the ability to : 

const A& rA = *myFun(); // A: ERROR, rA is unusable, initialized with invalid 

     // reference (invalidated by destruction of the 
     // temporary unique_ptr returned from myFun) 

use(rA);    // ERROR, rA initialized as invalid on line A 

In the first line, myFun returns a temporary unique_ptr (call it temp_up), then unary * returns a temporary 

reference temp_ref with pset(temp_ref) = temp_up', then temp_up is destroyed which implies 

KILL(temp_up)  pset(temp_ref) = invalid, and finally that is copied to initialize pset(rA) = 

invalid. 

As noted earlier, we diagnose the error at the creation of the unusable reference, since references cannot be 

reseated and so this initialization is just always nonsense. 

The poster added a coda: 

Note: if I assign the return of myFun to a named unique_ptr variable before dereferencing it, it works fine. 

Indeed it does: 

auto local = myFun();  // ok, local assumes ownership 

const A& rA = *local;  // ok, pset(rA) = {local} 

use(rA);     // ok, we know that local is keeping rA alive 

Implementing gc_ptr<T> 
Let’s imagine we want a new smart pointer type called gc_ptr that points into garbage-collected memory. The 

implementation is similar to unique_ptr, except that gc_ptr is copyable so it needs a raw_shared_owner. 

Also, it deliberately does not delete the raw_shared_owner in its own member functions, so we have to be 

able to express those semantics. 

http://stackoverflow.com/questions/30858850/dereferencing-a-temporary-unique-ptr
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template<class T> 

class gc_ptr { 

    raw_shared_owner<T*> p = nullptr; 

public: 

    T* get() const { 

        return p; 

    } 

    T* operator->() const { 

        return p; 
    } 

    T& operator*() const { 

        Expects(p != nullptr); 

        return *p; 

    } 

    operator T*() const [[enable_if_profiles(lifetime && bounds)]] { 
        return p; 

    } 

    gc_ptr() = default; 

Unlike unique_ptr, gc_ptr does not express unique ownership and so is copyable, and copying naturally 

doesn’t modify the source object. Because it is efficiently copyable, it doesn’t need distinct move operations. 

However, it doesn’t delete its owner member, so we have to [[suppress(lifetime)]] to say that’s okay: 

    ~gc_ptr() { 

        p = nullptr;   // ok for raw_shared_owner<> 

    } 

    gc_ptr(const gc_ptr& other) { 

        p = other.p;   // ok for raw_shared_owner<> 

  } 

    gc_ptr& operator=(gc_ptr& other) { 

        p = other.p;   // ok for raw_shared_owner<> 

  } 

Note that reset and release do not make sense for gc_ptr, so we omit them. And swap is unchanged: 

    void swap(gc_ptr& other) { 

        swap(p,other.p); 

    } 

Implementing unique_ptr<T[]> for arrays 
The specialization unique_ptr<T[]> for arrays is similar, but let’s do a small upgrade to use an array_view 

for bounds safety. 

template<class T, /*...*/> class array_view; // more on this later 

template<class T> 

class unique_ptr<T[]> { 
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    owner<array_view<T>> av; 

public: 

    array_view<T> get() const { 
        return av; 

    } 

Note As an additional improvement for bounds safety, I chose to change the return type of get() to 

array_view<T>. Returning a raw T* would not be that useful under the bounds profile where the 

pointer could be used only as a pointer to a single object. 

 If we want strict compatibility with the current standard unique_ptr<T[]> interface, we could 

alternatively provide 

  T* get() const { 

     return av.data(); 

 } 

 but adopting the return type change above adds better bounds safety; in bounds-safe code the 

returned T* would be usable only as a pointer to a single object. 

Instead of operator-> and operator*, the array version of unique_ptr provides operator[]: 

template<class T> 

T& unique_ptr<T[]>::operator[](size_t pos) const { // pset(ret) = {(*this)'} 

    Expects(pos < av.size()); 

    return av[pos]; 
} 

The expression av[pos] gives a T& to an element of the array_view whose owner is the same as the owner 

of the array_view, namely *this. 

Note Because the returned T& is lifetime-safe, combined with av also providing bounds-safety, we 

have complete memory safety for the returned T&. 

Aside: Similarly to unique_ptr for single objects, we can provide an implicit conversion to array_view, which 

is safe to use if the caller is lifetime-safe (note bounds does not need to be required this time). 

    operator array_view<T>() const [[enable_if_profiles(lifetime)]] { 

        return av; 

    } 

The next few functions are essentially unchanged: 

    unique_ptr() = default; 

    ~unique_ptr() { 

        delete[] av.data(); 

    } 

    unique_ptr(unique_ptr&) = delete; 

    unique_ptr& operator=(unique_ptr&) = delete; 

    unique_ptr(unique_ptr&& other) { 
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      : av{ release_owner(other.av) } 

    { } 

    unique_ptr& operator=(unique_ptr&& other) { 
        delete[] av.data(); 

        av = release_owner(other.av); 

    } 

    void reset(owner<array_view<T>> view = nullptr) { 

        delete[] av.data(); 

        av = release_owner(view); 
    } 

    owner<array_view<T>> release() { 

        return release_owner(av); 

    } 

    void swap(unique_ptr& other) { 

        std::swap(p, other.p); 
    } 

Implementing std::array<T>::iterator 
Now let’s try containers and iterators. 

Our focus will be on the iterator, so consider just a minimal subset of std::array, and how to implement its 

iterator to be lifetime-safe. Note array can happily remain an aggregate. 

template<class T, std::size_t N> 
class array { 

    T[N] data; 

public: 

    T& operator[](std::size_t pos) { 

        Expects(pos < N);  // (for bounds safety profile) 

        return data[pos];  // pset(ret) = {*this} 
    } 

Now consider writing a new indirection: array<T,N>::iterator. 

    class iterator { 
        array* a; 

        int pos = 0; 

Now we can infer something useful: 

        iterator(array& arr) : a{&arr} { } 

We know that iterator is a Pointer because it contains one. This has two effects: First, it allows conversion 

from the reference parameter’s lifetime pset(arr) to the member variable which would otherwise be a build 

time error because the lifetimes are unrelated. Second, and more significantly, it explicitly lets us infer that the 

iterator constructed using this constructor is valid for the lifetime of arr, so the iterator instance produced has 

validity pset(*this) = pset(arr). 

By capturing that *this refers to arr, it also changes the default lifetime of a returned pointer: 
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    public: 

        T& operator*() const { 

            Expects(pos < N); 
            return a->data[pos]; // pset(ret) = {*a} 

        } 

        // ... ++, --, etc. 

    } 

    iterator begin() noexcept { // pset(ret) = {*this} 

        return iterator(*this); 
    } 

    // ... 

}; 

Now consider the calling code: 

array<int,100> array1; 

int* ptr = nullptr;   // pset(ptr) = {null} 

 

{ 

    auto i = array1.begin(); // pset(i) = {array1} 

    auto j = i;   // pset(j) = {array1} 

    { 

        array<int,100> array2; 

        i = array2.begin(); // repointed, so now pset(i) = {array2} 

        *i = 42;   // ok 

    } // A: KILL(array2)  pset(i) = {invalid} 

    *i = 42;    // ERROR, i was invalidated on line A 

    i = array1.begin();  // pset(i) = {array1} 
    *i = 42;    // ok, now i is usable again 

    *j = 42;    // ok 

    ptr = &*j;    // ok, pset(ptr) = {array1} 

    ++j; 

} 

*ptr = 42;    // ok: ptr’s validity not tied to j 

Implementing array_view 
Now let’s try a simplified array_view. 

template<class T> class array_view { 
    T* a; 

    int size = 0; 

public: 

    template<std::size_t N> 

    array_view(std::array<T,N>& arr) : a{&arr[0]}, size{N} { } 

      // pset(*this) = pset(arr) 



Page 38 of 45 
 

 

Again, the non-owner member enables conversion from the reference parameter’s lifetime to the member 

variable, and lets us infer that the view constructed using this constructor is valid for the lifetime of &arr[0] 

which is the same as arr, so the view instance produced has pset(*this) = arr'. 

Here are a few more functions, and for exposition let’s just call all the parameters arr: 

    template<std::size_t N> 

    array_view(T (arr&)[N]) : a{&arr[0]}, size{N} { } 

      // pset(*this) = pset(arr) 

    template<std::size_t N> 

    array_view(std::vector<T> arr) : a{&arr[0]}, size{arr.size()} { } 

      // pset(*this) = pset(arr') 

Let’s throw in the copy constructor (the compiler-generated one would do the same thing): 

    array_view(const array_view& other) : a{other.a}, size{other.size} { } 

      // *this copies pset from other 

By capturing that *this refers to arr, it also changes the default lifetime of a returned pointer: 

    T& operator[](int pos) const { 

        Expects(pos < size); 

        return a[pos];  // pset(ret) = {owners-of-this-object} 

    } 

    // ... ++, --, etc. 

}; 

Now consider the calling code, and note how we naturally distinguish between array directly owning its 

memory (valid for the lifetime of the array) vs. vector indirectly owning its memory (valid until the vector is 

destroyed or modified): 

array<int,100> array1; 

int* ptr = nullptr;   // pset(ptr) = {null} 
 

{ 

    array_view<int> i = array1; // pset(i) = {array1} 

    array_view<int> j = i;  // pset(i) = {array1} 

    { 

        vector<int> array2(100); 
        i = array2;   // repointed, so now pset(i) = {array2'} 

        i[0] = 42;   // ok 

        array2.push_back(1); // A: KILL(array2')  pset(i) = {invalid} 

        i[0] = 42;   // ERROR, i invalidated by push_back on line A 

    } 

    i = array1;   // pset(i) = {array1} 

    i[0] = 42;    // ok, now i is usable again 

    j[0] = 42;    // ok 

    ptr = &j[0];   // ok, pset(ptr) = {array1} 

} 
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*ptr = 42;    // ok: ptr’s validity not tied to j 

Implementing std::vector<T>::iterator 
Consider just a minimal subset of std::vector, and how to implement its iterator to be lifetime-safe. 

This adds two twists over the std::array case from earlier: 

 vector adds a level of indirection because the data is on the heap rather than as a member variable, 

and so the lifetimes are shorter because the heap data can be replaced. 

 This code exercises composability, because we’re going to try to reuse another owner type. Two 

candidates are unique_ptr<T[]> for arrays, and owner<array_view<T>>. Let’s do the former. 

Starting off: 

template<class T> 
class vector { 

    unique_ptr<T[]> data; 

public: 

    T& operator[](std::size_t pos) { // pset(ret) = {(*this)'} 

        return data.get()[pos]; 

    } 

And now vector<T>::iterator. 

    class iterator { 

        vector* v; 
        int pos = 0; 

        iterator(vector& vec) : v{&vec} { } 

    public: 

        T& operator*() const { 

            return v[pos];   // pset(ret) = {(*v)'} 

        } 

        // ... ++, --, etc. 

    } 

    iterator begin() noexcept {  // pset(ret) = {(*this)'} 

        return iterator(*this); 

    } 

Now consider the calling code: 

vector<int> array1(100); 

int* ptr = nullptr;   // pset(ptr) = {null} 

 

{ 

    auto i = array1.begin(); // pset(i) = {array1'} 

    auto j = i;   // pset(j) = {array1'} 

    { 

        vector<int> array2(100); 

        i = array2.begin(); // repointed, so now pset(i) = {array2'} 
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        *i = 42;   // ok 

        array2.push_back(1); // A: KILL(array2')  pset(i) = {invalid} 

        *i = 42;   // ERROR, i was invalidated by 

      // “array2.push_back” on line A 

    } 

    i = array1.begin();  // pset(i) = {array1'} 

    *i = 42;    // ok, now i is usable again 

    *j = 42;    // ok 

    ptr = &*j;    // ok, pset(ptr) = {array1'} 

    ++j; 

} 

*ptr = 42;    // ok: ptr’s validity not tied to j 

Implementing a tree-based container 

Handing out references 
Transitive shared_ptrs maintain ownership. Note that using raw local * variables eliminates needless 

reference counting overhead. 

template<class T> 

class tree { 
    shared_ptr<Node> root; 

    struct Node { 

        T data; 

        shared_ptr<Node> left, right; 

        weak_ptr<Node> parent; 

    }; 

public: 

    shared_ptr<T> get_root() { // as a simple example 

        assert(root.get()); // ok, pset(root.get()) = {root'} 

        return shared_ptr<T>(root, root->data); 

      // pset(ret) = {root'} 

    } 

Note that this is safe because of the lifetime root' on the second argument. 

    shared_ptr<T> get_leftmost_slow() { // another simple example 

        auto p = root; 

        assert(p); 
        while (p->left) p = p->left; 

        return shared_ptr<T>(p, p->data); 

    } 

    shared_ptr<T> get_leftmost_fast() { // another simple example 

        Node* p = root.get(); // pset(p) = {root'}, not copying root 

        assert(p); 
        while (p->left) 
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            p = p->left.get(); // pset(p) = {root''} 

        return shared_ptr<T>(p, p->data); 

    } 
}; 

Note that the last line in each function does this, without annotation: 

        return shared_ptr<T>(p, p->data); 

How can this constructor call be lifetime-safe? This is the shared_ptr(r,ptr) aliasing constructor, where 

“to avoid the possibility of a dangling pointer, the user of this constructor must ensure that p remains valid at 

least until the ownership group of r is destroyed” [ISO C++], and “it is the responsibility of the programmer to 

make sure that ptr remains valid as long as this shared_ptr exists, such as in the typical use cases where ptr 

is a member of the object managed by r or is an alias (e.g., downcast) of r.get()” [cppreference.com]. By 

now, all of that sounds familiar… we can spell it with a lifetime constraint: 

template<class T, class Y> 

shared_ptr<T>::shared_ptr( const shared_ptr<Y>& r, T *ptr [[lifetime(r')]] ); 

Not handing out references 
If we don’t hand out references, unique_ptr suffices. Because we can’t use weak_ptr here for the parent 

pointer, when we assign the parent pointer we need to say “trust me” via [[suppress(lifetime)]]. 

template<class T> 

class tree { 

    unique_ptr<Node> root; 

    struct Node { 

        T data; 

        unique_ptr<Node> left, right; 
        Node* parent; 

        Node(Node& parent_) { [[suppress(lifetime)]] parent = &up; } 

    }; 

public: 

    T get_root() {    // as a simple example – now by value 
        assert(root.get()); 

        return root->data; 

    } 

    T get_leftmost() {   // another simple example 

        auto p = root.get();  // pset(p) = {root'} 

        assert(p); 
        while (p->left) 

            p = p->left.get();  // pset(p) = {root''} 

        return p->data; 

    } 

}; 



Page 42 of 45 
 

 

Appendix 2: owner<> and raw_shared_owner<> 
Note This is a portion of the forthcoming Section III draft to mention enough of the basic tools used 

elsewhere in this paper, such as move_owner, so that this paper can be read in isolation. Details 

such as whether have an array_ptr alias are still undergoing refinement. 

array_ptr 
For compatibility and migration of older code that uses T* and cannot convert to use a smart pointer, we 

provide owner<T*> for a single object, and to distinguish pointer to arrays we provide the additional alias 

array_ptr to be used as owner<array_ptr<T>>. 

Let 

template<class T, int N> using array_ptr = T*; 

be an alias that designates the pointer points to an array of length N, and allow conversions: 

 from array_ptr<T,N> to array_view<T,N>; 

 from owner<array_ptr<T,N>> to owner<array_view<T,N>>; and 

 from raw_shared_owner<array_ptr<T,N>> to raw_shared_owner<array_view<T,N>>. 

Common rules 
In the lifetime profile: 

 new X returns an rvalue of type owner<X*>. 

 new X[N] returns an rvalue of type owner<array_ptr<X,N>>. 

 delete/delete[] cannot be called on any type except as permitted below. 

 delete can be called on any owner<T> or raw_shared_owner<T>. 

 delete[] can be called on owner<A> or raw_shared_owner<A> where A is an array_ptr or 

array_view. 

Notes owner<array_view<T,N>> is allowed as well and is preferred. However, array_ptr is more 

compatible by being just an alias so that existing code using T* to point to an owned array can 

switch to owner<array_ptr<T,N>>. 

 As an extension, we could say that when T is an array_ptr, delete means to invoke delete[]. 

However, this is a semantic change that would require compiler implementation, whereas otherwise 

these rules can be implemented in any source build step (not necessarily in a compiler). 

 As a future extension to help C-style code, we could also consider providing some malloc 

compatibility along the following lines: 

 m_owner<X*> p = malloc(N) is legal iff sizeof(X)<=N and X is trivially constructible. 

 m_owner<array_ptr<X,M>> p = malloc(N) is legal iff sizeof(X)*M<=N and X is trivially 

constructible. 

 m_owner<array_view<X,M>> p = malloc(N) is legal iff sizeof(X)*M<=N and X is 

trivially constructible. 

 free is available for all of these with the lifetime state effect of delete. 
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Every owner<T> and raw_shared_owner<T> is always in one of the states {valid, invalid, null} and 

obeys the following state transition tables. In those tables: 

 DECLARE(x) means x is declared. Its initial value must be set as a separate step. 

 END_LIFE(x) means that x is destroyed (e.g., a local variable at the end of its scope). 

 ESCAPE(x) means that x leaves the local function scope (e.g., is a modifiable & parameter and we are 

leaving the function body via return or throw). 

Unique ownership: owner<> 
owner<> is a type alias that allows legacy and lowest-level data structures using owning raw pointers with 

unique ownership to be correctly identified as owners in an ABI-compatible way by not disturbing their type. 

owner is intended to be principally used for single heap objects via owner<T*> and for heap arrays via 

owner<array_ptr<T,N>> or owner<array_view<T>>. 

In the lifetime profile, the following rules apply to owner<T>. 

 T must be a non-owner indirection. 

 An owner<T> obeys the following state transition table. 

 Pre Post 

DECLARE(o) (not applicable) o is invalid 

o = new T o is invalid or null o is valid 
o = o2 o is invalid or null 

(no requirement on o2) 
o is o2’s “pre” state 
o2 is invalid 

*o 
o-> 

o is valid (no change) 

&o o is in any state (no change) 
delete o o is valid or null o is invalid 

END_LIFE(o) o is invalid or null (not applicable) 

ESCAPE(o) o is valid or null (not applicable) 
 

 The following helpers to automate common usages to comply with the above table: 

template<class T> 

void move_owner(owner<T>& dst, owner<T>&& src) 

    { delete dst; dst=src; src=nullptr; } 

template<class T>  
auto release_owner(owner<T>&& src) -> owner<T> 

    { owner<T> tmp=src; src=nullptr; return tmp; } 

 Constructing or assigning a T from an owner<T> o is like calling a smart pointer’s “get” and yields a T 

with a pset of {o'}. 

 Constructing or assigning an owner<T> from a T is not allowed. 

Notes owner<T*> should be thought of as an unencapsulated unique_ptr<T>. That is, instead of 

performing ownership operations (such as moving ownership or performing delete) within 

encapsulated unique_ptr member functions, we expose the raw *, C++98-style, and require all 

callers to share the responsibility of collaboratively implement the same semantics by hand.  
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 Constructing or assigning an owner<T> from a T is not allowed because it is unsafe. For example, 

code could copy the same pointer to two different owners, leading to eventual double delete. 

 For code that has owning raw pointers that intends unique ownership, change the variable’s 

declaration from T* to owner<T*> and then any lurking mistakes will start to be diagnosed at build 

time. 

Shared ownership: raw_shared_owner<> 
raw_shared_owner<> is a type alias that is intended for use primarily inside the implementation of smart 

pointers. raw_shared_owner is intended to be principally used for single heap objects via 

raw_shared_owner<T*> and for heap arrays via raw_shared_owner<array_ptr<T,N>> or 

raw_shared_owner<array_view<T>>. 

Note The name is bikesheddable. This alias doesn’t necessarily need to be used for shared ownership, but 

for any ownership convention that is not straight unique+new+delete ownership and so relies on 

surrounding code that we cannot check for correct enforcement. Because it’s really “opaque” to the 

lifetime rules, it should have an ugly name. Potential alternative names include: hidden_owner, 

manual_owner, opaque_owner, raw_opaque_owner, trustme_owner, etc. 

 We are considering initially restricting raw_shared_owner to be a private data member, for use 

only in implementing non-unique owner library abstractions like shared_ptr and gc_ptr. 

However, if there are many places where it could be useful in existing code, we may need to allow 

its more widespread use despite its weaker guarantees. 

In the lifetime profile, the following rules apply to raw_shared_owner<T>. 

 T must be a non-owner indirection. 

 A raw_shared_owner<T> obeys the following state transition table. Differences from the owner<> 

state transition tables are highlighted. Note that there is a new row to allow setting a 

raw_shared_owner from an owner o. 

 Pre Post 

DECLARE(s) (not applicable) s is invalid 
s = o s is in any state s is o’s “pre” state 

o is invalid 
s = s2 s is in any state s is s2’s “pre” state 

(no change to s2) 
*s 
s-> 

s is valid (no change) 

&s s is in any state (no change) 
delete s s is valid or null s is invalid 

END_LIFE(s) s is in any state (not applicable) 

ESCAPE(s) s is valid or null (not applicable) 
 

 Constructing or assigning a T from a raw_shared_owner<T> s is like calling a smart pointer’s “get” 

and yields a T with pset {s'}. 

 Constructing or assigning a raw_shared_owner<T> from a T is not allowed. 
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Note Unlike with owner<>, the raw_shared_owner<> rules do not by themselves guarantee freedom 

from leaks (failure to delete) or multiple deletion. Basic shared indirection types are intended to 

encapsulate a raw_shared_owner and then perform their own appropriate tracking, such as a 

reference count or tracing collection, to ensure that delete is called exactly once. However, 

because this responsibility is encapsulated within these few basic types, as long as their 

implementations are correct the entire program is correct. 

 


