
Lifetime Safety: Preventing Leaks and Dangling
I. Approach II. Informal overview and rationale

Version 0.9.1

Herb Sutter and Neil MacIntosh, 2015-09-21

Contents
Goal: Eliminate leaks and dangling for */&/iterators/views/ranges ..3

Related work...3

I. Approach and principles ..5

II. Informal overview and rationale ..5

Indirections, Owners, and Pointers ..6

Lifetime tracking for Pointers ...7

Points-to set (pset) ...7

1. Aliasing: Taking addresses and dereferencing ...8

2. Invalidation by modifying Owners ... 10

3. Branches .. 11

4. Loops ... 13

5. null .. 16

6. throw and catch ... 17

7. Calling functions: Arguments and in/inout parameters .. 18

8. Calling functions: Return values and out/inout parameters ... 19

9. Transferring ownership ... 25

10. Lifetime-const .. 25

Appendix 1: Applied examples and experiments .. 26

Additional examples .. 26

Implementing and using std::unique_ptr for single objects .. 30

Implementing gc_ptr<T> .. 33

Implementing unique_ptr<T[]> for arrays .. 34

Implementing std::array<T>::iterator ... 36

Page 2 of 45

Implementing array_view ... 37

Implementing std::vector<T>::iterator ... 39

Implementing a tree-based container ... 40

Appendix 2: owner<> and raw_shared_owner<> .. 42

array_ptr ... 42

Common rules ... 42

Unique ownership: owner<> .. 43

Shared ownership: raw_shared_owner<> .. 44

Acknowledgments

Thanks especially to Bjarne Stroustrup. This work aims to help “finish the base model of C++” with its strong

resource management model, and is codifying ideas that he has been developing for a decade and more. It

also relies on features available uniquely, or most clearly, in C++ compared to other languages that do not

rely on garbage collection. Stroustrup is a reliable source of both insight and pragmatism, and this paper is

much clearer because of his feedback, including but not limited to the clear statement of principles in

Section I and the Owners of Pointers examples.

Thanks also to Andrei Alexandrescu, Pavel Curtis, Gabriel Dos Reis, Joe Duffy, Daniel Frampton, Chris

Hawblitzel, Leif Kornstaedt, Aaron Lahman, Gor Nishanov, Andrew Pardoe, Jared Parsons, Dave Sielaff, and

Jim Springfield, for their comments and feedback on these ideas and/or drafts of this paper.

Notes This paper is a work in progress. It may well contain typos and minor inconsistencies as examples

have been maintained by hand concurrently with the refinement of the model, although the

examples are also run through the prototype compiler implementation. Bug reports are welcome –

please open an issue.

 There are three areas of known open work: (1) Iterate to refine the rules to address cases that

generate excessive false positives when running the checker against production code; these will

likely be addressed by adding specific rules, such as has already been done to address null tests (see

II.5). (2) Finalize the shared ownership model. (3) Complete Section III, Analysis rules – the formal

description to be used by implementations, which we anticipate producing as a separate companion

paper in the coming months. (A small portion of Section III appears in this paper as Appendix 2, and

is included here to make this paper better able to stand alone because some of the later examples

use features, such as move_owner, that are from Section III.)

Page 3 of 45

Goal: Eliminate leaks and dangling for */&/iterators/views/ranges
We want freedom from leaks and dangling – not only for raw pointers and references, but all generalized

Pointers such as iterators—while staying true to C++ and being adoptable:

1. We cannot tolerate leaks (failure to free) or dangling (use-after-free). For example, a safe std:: library

must prevent dangling uses such as auto& bad = vec[0]; vec.push_back(); bad = 42;.

2. We need the raw efficiency of “just an address” pointers and references especially when used locally on

the stack as function arguments/parameters, return values, and local variables. For example, a safe std::

library cannot just ban returning a reference from vector<T>::operator[]; it must still allow vec[0]

= 42; to return and write through a raw reference. We also need the flexibility of being able to write

efficient user-defined iterators, ranges, views, and other indirections, as pure libraries with comparable

abstraction overheads to today’s STL when used locally on the stack.

3. We cannot tolerate run-time overheads, such as widespread reliance on tracing garbage collection or

other run-time instrumentation, as required in languages like Java, C#, D, Go and others where GC is

mandatory or required to use the full standard library. That would defeat the purpose of passing “just an

address” because the total cost to the program would include the cost of tracing collection. It also takes

us out of the realm of C++, where “zero overhead” and “don’t pay for what you don’t use” are table stakes.

4. We cannot tolerate significant source code impact, such as heavy annotation as required in systems like

Cyclone and Rust (see Related work). That would defeat both usability/comprehensibility and adoptability.

5. We cannot tolerate excessive false positives, or flagging as lifetime “errors” code that is not actually

leaking or dangling. Our goal is that the false positive rate should be kept at under 10% on average over a

large body of code; that is, 90% of diagnosed errors should be actual or latent errors.

This paper attempts to efficiently enforce leak-freedom and dangle-freedom statically at build time, including

for existing C++ source code with little annotation and only simple reorganization. The key insight is that we can

directly leverage C++’s existing strong notions of:

(a) scopes and lifetimes, including base and by-value member subobject lifetimes tied to the outer object;

(b) the compiler’s awareness of private members, including full definitions of all types used by-value; and

(c) const to identify non-mutating accesses.

To distinguish owning from non-owning pointers, this design uses the GSL owner<> type alias to distinguish

owning pointers and views, on which more complex owning types are built.

Note Because owner<> is a type alias, it can be used to add build-time analysis information without

disturbing any program types or ABI compatibility.

The design attempts to statically ensure leak-freedom and dangle-freedom for all indirection types including

iterators and ranges, with no dynamic checking or reliance on GC, and therefore with identical space and time

performance while continuing to use existing types including non-owning raw pointers and references.

Note This paper focuses on lifetimes before and during main. As a future extension we may want to

additionally consider lifetime errors during static destruction.

Related work
Many thoughtful efforts to create a safe systems programming language don’t meet the above requirements:

 They handle only C, because “C is simpler.” We want a solution for C++; in fact, although the C language

is simpler than C++, C++ programs are simpler to analyze than C because they contain much richer

Page 4 of 45

information, notably through C++’s strong scope and ownership semantics. Several techniques in this

paper exploit this information and can only be done in C++.

 They incur run-time overheads. Notably, many approaches rely on pervasive garbage collection, which

incurs space (heap size) and time (collection pauses) overheads that do not fit C++’s zero-overhead

“don’t pay for what you don’t use” design goal.

 They rely on whole-program analysis. This does not scale to real-world code sizes.

 They require extensive annotation. Excessive annotation is harder to write and usually difficult to reason

about for the programmer. It also means that extensive necessary information is missing in the source

code, which is less true for C++ – or that it is present but not used. Too much annotation blocks

adoption because it is too invasive – it requires too much change before seeing benefits.

 They invent a new language. This could be tenable if it could be used side-by-side with C++ code with

seamless interoperation, able to call C++ code directly without syntactic or code overhead, but no safe

language we know of does this; some do provide good foreign function interfaces but only to C.

 One or more of the above.

Although this work is not derived from these efforts, we are aware of many of them. Below we note specific

related work to compare/contrast approaches.

Cyclone: Regions
Cyclone, an extension to C for memory safety, has the concept of growable regions, where a pointer can be

associated with a region to ensure the pointer outlives the region it points into. Regions can be implicit, but

often need to be written explicitly in source code.

The result has advantages but is cumbersome to use. For an extension in this direction to be successful, the

programmer should almost never be required to write these annotations, especially not on function parameters

or on stack variables in calling code, and only rarely on library function signatures. Because C++ already has

strong knowledge of scoped lifetimes for local and member variables, a key insight is that we can simply use the

name of any scoped variable to denote its implicit lifetime ‘region’ without additional notation.

Rust and System C# : Borrowing
Rust, and following it System C#, have the concept of borrowing a pointer or reference to an object and checking

its lifetime statically. Both features are more general and complex than the one proposed in this paper.

System C# is built on the C# environment and object model, which carries capabilities and constraints not

applicable to C++ and so naturally leads to a different design point. C# assumes that objects have lazy GC

lifetime; we cannot, because that would violate our zero-overhead design constraint. C# objects are uncopyable

and unscoped by default, and this constrains what can be expressed in the System C# model; instead, C++

already has strong knowledge of scoped lifetimes for local and member variables, and has statically known

deterministic lifetime and destruction by construction and by default (e.g., default RAII vs. C# opt-in using).

Rust borrowing is part of a more general attempt to deeply enforce strong object ownership semantics

pervasively, including with a number of built-in pointer types; instead, our design is a simpler feature focused on

eliminating leaks and dangling only, while enabling similar pointer types (including the std:: smart pointers

with little or no modification) to still be built as libraries. Also, Rust chooses to treat the creation of a dangling

pointer as an error; this seems too restrictive, especially because reusing pointer/iterator local variables is

common and easy to make safe, so we feel that for local variables it is sufficient to diagnose only attempts to

read (including dereference, copy from, and compare) dangling pointers.

http://en.wikipedia.org/wiki/Cyclone_(programming_language)
http://cyclone.thelanguage.org/wiki/Cyclone%20for%20C%20Programmers/#Regions
http://rustbyexample.com/borrow.html
http://rustbyexample.com/lifetime/borrow.html
http://www.rust-lang.org/

Page 5 of 45

I. Approach and principles
The basic rules we teach the programmer are:

1. Prefer to allocate heap objects using (owning) make_unique<T>/make_shared<T> or containers.

2. Otherwise, use owner<T*> for source/layout compatibility with old code. Each non-null owner<> must

be deleted exactly once, or moved.

3. Never dereference a null or invalid Pointer.

4. Never allow an invalid Pointer to escape a function.

The more detailed lifetime tracking system rules in the rest of this paper describe a means to soundly diagnose

violations of rules 2, 3, and 4 at build time.

The approach in this paper is:

 Local rules, statically enforced. Doing all checks at build time locally within a function avoids run-time

overhead while also keeping builds scalable. Whole-program guarantees are achieved when building the

whole program, but without global analysis.

 Identify Owners, track Pointers. There are two kinds of indirection: Owners own what they point to and

cannot dangle, and Pointers that do not and can dangle. The rules for Owners aim to ensure they clean

up accurately and do not leak. The rules for Pointers aim to ensure they do not dangle.

 Few annotations. Deduction rules let us infer the vast majority of Owner and Pointer types: If a type X

contains an Owner by value, then X is an Owner; otherwise if a type X is not an Owner and contains a

Pointer by value, then X is a Pointer. Similarly for function calls, well-chosen default lifetime rules for

Pointers passed as parameter and return values aim to avoid the need for explicit lifetime annotation for

the vast majority of functions.

The principles behind the design are:

 A Pointer may not outlive the object it points to. The only exception is that local variables of Pointer

type can be reused; they can dangle as long as they are not read (including dereferenced, copied from,

or escaped) while dangling, which can be enforced locally.

 We track the outermost object. For an object held by value as a class member or array element, we

track the enclosing object or array. For a heap object, we track its Owner.

 When calling a function, a Pointer passed in as a parameter must be valid for the lifetime of the

function. This is enforced at the call site by disallowing passing a pointer the callee could invalidate.

 When calling a function, by default Pointer parameters are independent. This is enforced at the call

site by disallowing passing a Pointer the callee could invalidate. Occasionally functions do something

else; these require an annotation.

 When calling a function, by default a returned Pointer is derived from the Owner and Pointer inputs.

This is enforced in the callee when separately compiling the called function’s body. Occasionally

functions do something else; these require an annotation.

 Annotation is required to express a non-default lifetime or to say “trust me here.”

II. Informal overview and rationale
This section is an informal tour of the design and design choices.

See Section III, Analysis rules (forthcoming this winter, separate document) for a full formal description.

Page 6 of 45

Indirections, Owners, and Pointers
An Indirection is an object that provides indirect access to another object. An Owner is an Indirection that owns

the object it points to. A Pointer is an Indirection that does not own the object it points to.

We deduce these qualities for a type X as follows:

X is a/an… when X… Examples Can dangle

SharedOwner, shares
ownership of the
indirected object

contains a SharedOwner indirection
member by value

shared_ptr,
raw_shared_owner<non-
owner>

no

UniqueOwner, owns
the indirected object

is not a SharedOwner and contains a
UniqueOwner member by value

containers, unique_ptr,
owner<non-owner>

no

Pointer, doesn’t own
the indirected object

is not an Owner and contains a
Pointer by value

raw * and &, iterators, ranges,
views

yes

not an Indirection is none of the above struct point {
 int x; int y;
};

no

Note raw_shared_owner<> is a type alias used as a building block for shared owners. The shared

ownership model is currently being refined; more detail about shared ownership will be covered in

future drafts of this paper, and in the upcoming Section III, Analysis rules formal description.

For example:

template<class T /*...*/>

class unique_ptr { // unique_ptr is a UniqueOwner...

 owner<T*> p; // ...because it contains one

 // ...

};

template<class T /*...*/>

class shared_ptr { // shared_ptr is a SharedOwner...

 raw_shared_owner<T*> p; // ...because it contains one

 // ...

};

template<class T>

class container { // container is a UniqueOwner...

 unique_ptr<T[]> root; // ...because it contains one

public:

 class iterator { // iterator is a Pointer...

 container* cont; // ...because it contains one

 // ...
 };

 // ...

};

Page 7 of 45

class x { // x is a non-indirection...

 int i; // ...because it contains no Indirection

};

Note It is essential to distinguish Owners from Pointers, but this distinction needs to be made explicit

primarily just for raw * and &; we believe we can infer the rest.

Lifetime tracking for Pointers
A Pointer can be made lifetime-safe (e.g., no dangling use) by statically tracking what it points to, notably:

 the object it currently refers to; or

 the owner keeping the referred-to object alive.

For example, given

auto up = make_unique<int>(42); // Owner, always valid

int* p = up.get(); // Pointer, can be invalidated

*p = 42; // ok

we want to capture that the pointer p is valid for the lifetime of the integer it refers to, which here is until up is

destroyed or rebound; the latter happens when a non-const operation is performed on up:

up = something_else; // A: invalidates p

*p = 42; // ERROR, p referred to an object owned by ‘up’

 // before ‘up’ was modified on line A

A Pointer p that is a local variable may refer to something that it could outlive; this lets the programmer easily

reuse p later in the local function. Although p could potentially dangle through invalidation, any actual

invalidation is statically diagnosed, and once p is invalidated it must be destroyed or reassigned before any other

use.

In the following examples (all examples showing raw * apply equally to &):

 green highlights legal uses of valid pointers;

 x highlights the point at which an invalidation occurs; and

 red highlights subsequent illegal uses of invalidated pointers (when those are allowed to be formed).

Points-to set (pset)
For a Pointer or SharedOwner p, let pset(p) denote what p refers to.

Let pset (“points-to set”) be a set where each element is one of the following:

 Meaning p is invalidated if
obj p currently refers to obj obj is destroyed
obj’ p currently refers to an object owned

directly by owner obj
obj is destroyed or modified by non-const use

obj’’ p currently refers to an object kept alive
indirectly (transitively) via owner obj

obj’ is destroyed or modified by non-const use

null p is invalid for any use until tested to be
not equal to the null pointer constant

used without removing null from the list via a
not-null branch

Page 8 of 45

static p currently refers to a static object, or an
object owned directly by a const static
owner object

valid (until the end of main; may inject additional
checking after main ends)

invalid p is already invalid always, it’s already invalid

Note There is no provision for inventing names of “regions.” All lifetimes are tied to existing objects that

already have names and lifetimes, or in the case of shared references automatically synthesized

from them.

p is valid to dereference as long as pset(p) does not contain invalid or null.

Notes:

 The set entries are interpreted as “or’d.” For example, pset(p) == {a,null} denotes that p either

refers to the object a or is null.

 Any other entries are redundant with invalid, so (anything,invalid) == invalid.

 More than two ' means the same as two '. For example, {a'''} == {a''}.

Let KILL(o) mean to invalidate all occurrences of o, o', and o'' in existing psets. For example, given

pset(p1) = x, pset(p2) = x', and pset(p3) = x'':

 KILL(x) invalidates all of p1, p2, and p3.

 KILL(x') invalidates p2 and p3.

 KILL(x'') invalidates p3.

1. Aliasing: Taking addresses and dereferencing
Taking the address of an lvalue x, or of a data member or array element inside x, results in a (non-owning) raw

pointer whose pset is {x}. A pset entry o' that refers to a data member x.o can be converted to a pset entry

{x'}.

Note A pointer to a local, or to a member, etc. can never be an owner. The only way to obtain an

owner<> is from new. For any variable or other lvalue x, &x is still a T* (not owner<T*>), binding a

reference to x is still a T& (not an owner<T&>) and you can’t convert a T* to an owner<T*>

implicitly without forcibly suppressing the lifetime rules.

Example 1.1: Address of local variable and invalidation
For example:

int* p = nullptr; // pset(p) = {null}
{

 int i = 0;

 p = &i; // pset(temp) = {i} pset(p) = {i}

 *p = 42; // ok

} // A: KILL(i) pset(p) = {invalid}

*p = 1; // ERROR, p was invalidated when i went out of scope

 // at line A. Solution: increase i’s lifetime, or

 // reduce p’s lifetime

Page 9 of 45

Note The solution in this and all examples is to change the scope of a local variable: to make the scope of

a local pointer smaller (e.g., introduce additional pointer locals to separate flow) or to make the

scope of a local variable bigger (e.g., move the destroyed local further out so the pointer isn’t

invalidated, or defer the mutation of a local owner).

Example 1.2: Address of member variable or array element
Consider members and array elements:

struct mystruct { int m; } s;

auto p = &s.m; // pset(p) = {s}

int a[100];

auto p = &a[0]; // pset(p) = {a}

Example 1.3: pset(member variable or array element) = pset(enclosing object/array')
Consider members that are owners:

struct mystruct {
 owner<int*> m;

 void f() {

 int* p = m; // pset(p) = {m'} (we are inside mystruct)

 }

} s;

int* p = s.m; // pset(p) = {s'} (we are outside mystruct)

owner<int*> a[100];

int* p = a[0]; // pset(p) = {a'}

Note For stack arrays of indirections like a, we could consider additionally tracking each individually.

Example 1.4: Dereferencing
Consider dereferencing:

int i = 0; // non-indirection

int& ri = i; // pset(ri) = {i}

int* pi = &i; // pset(pi) = {i}

auto s = make_shared<int>(0); // Owner
auto* ps = &s; // pset(ps) = {s}

 // Pointer

int** ppi = π // pset(ppi) = {pi}

Naturally therefore, dereferencing a pointer to pointer results pointer whose pset is substituted by the current

pset of each entry – we are simply copying a pointer, including its pset. For example:

 // IN: pset(ppi)=={pi}, pset(pi)=={i}

int* pi2 = *ppi; // pset(*ppi) == pset(pi) == {i}

 // OUT: pset(pi2) = {i}

int j = 0;
pi = &j; // pset(pi) = {j} – makes **ppi point to j,

 // but only updates pset(pi)

Page 10 of 45

 // IN: pset(ppi)=={pi}, pset(pi)=={j}

pi2 = *ppi; // pset(*ppi) == pset(pi) == {j}

 // OUT: pset(pi2) = {j}

2. Invalidation by modifying Owners
Modifying an Owner o invalidates anything whose pset depends on o'.

Dereferencing a Pointer no that could modify the target object invalidates anything whose pset depends on

pset(no)' which means to add ' to each owner in the list. For example, if pset(x) = {a',b''}, then

pset(x)' = {a'',b''}.

Example 2.1: Invalidation by modifying Owners
For example:

auto s = make_shared<int>(0);

int* pi3 = s.get(); // pset(pi3) = {s'} [more on this later]

s = make_shared<int>(1); // A: KILL(s') pset(pi3) = {invalid}

*pi3 = 42; // ERROR, pi3 was invalidated by

 // assignment to s on line A

// Chris Hawblitzel’s example

auto sv = make_shared<vector<int>>(100);

shared_ptr<vector<int>>* sv2 = &sv; // pset(sv2) = {sv}

vector<int>* vec = &*sv; // pset(vec) = {sv'}

int* ptr = &(*sv)[5]; // pset(ptr) = {sv''}

*ptr = 1; // ok

 // track pset of: sv2 vec ptr

 // ----- ----- -----

 // IN: sv sv' sv''

vec-> // same as “(*vec).” *vec is sv'

 push_back(1); // non-const operation on sv' KILL(sv'')

 // OUT: sv sv' invalid

*ptr = 3; // ERROR, invalidated by push_back

ptr = &(*sv)[5]; // back to previous state to demonstrate an alternative...

*ptr = 4; // ok

 // IN: sv sv' sv''

(*sv2). // *sv2 is sv

 reset(); // non-const operation on sv KILL(sv')

 // OUT: sv invalid invalid

vec->push_back(1); // ERROR, invalidated by reset

*ptr = 3; // ERROR, invalidated by reset

Note how the modification of *sv2 correctly invalidates ptr which was obtained via an unrelated path (sv).

Page 11 of 45

Example 2.2: Container of containers
Here is a variation on Chris Hawblitzel’s example showing a container of containers.

vector<vector<int>> vv;

vector<vector<int>>* vv2 = &vv; // pset(vv2) = vv

vector<int>* vec = &vv[0]; // pset(vec) = vv'

int* ptr = &(*vec)[5]; // pset(ptr) = vv''

*ptr = 0; // ok

 // track pset of: vv2 vec ptr

 // ----- ----- -----

 // IN: vv vv' vv''

vec-> // same as “(*vec).” pset(*vec) == {vv''}

 push_back(1); // KILL(vv'') because non-const operation

 // OUT: vv vv' invalid

*ptr = 1; // ERROR, invalidated by push_back

ptr = &(vv[0])[5]; // back to previous state to demonstrate an alternative...

*ptr = 0; // ok

 // IN: vv vv' vv''

vv2-> // same as “(*vv2).” pset(*vv2) == {vv'}

 clear(); // KILL(vv') because non-const operation

 // OUT: vv invalid invalid

*ptr = 2; // ERROR, invalidated by clear

3. Branches
When a Pointer is assigned to within a branch of an if, then at the end of the if’s scope we concatenate the

lists at the end of each branch to record the “or’d” list of potential owners.

Similarly for switch, when a Pointer is assigned to within a path through a switch, then at the end of the

switch’s scope we concatenate the lists at the end of each break path to record the “or’d” list of potential

owners.

Example 3.1: Invalidation in both branches
Both branches could invalidate. For example:

int* p = nullptr; // pset(p) = {null}

if(cond) {

 int i = 0;

 p = &i; // pset(p) = {i}

 *p = 42; // ok

} // A: KILL(i) pset(p) = {invalid}

else {

 int j = 1;

 p = &j; // pset(p) = j
 *p = 42; // ok

} // B: KILL(j) pset(p) = {invalid}

Page 12 of 45

// merge pset(p) = {invalid}

*p; // ERROR, p was invalidated when i went out of scope

 // at line A or j went out of scope at line B.

 // Solution: increase i’s and j’s lifetimes, or

 // reduce p’s lifetime

Example 3.2: Invalidation in one branch
Invalidation on only one branch allows the possibility of “could be invalidated.” For example:

int* p = nullptr; // pset(p) = {null}
int i = 0;

if(cond) {

 p = &i; // pset(p) = {i}

 *p = 42; // ok

} // no invalidation

else {
 int j = 1;

 p = &j; // pset(p) = {j}

 *p = 42; // ok

} // A: KILL(j) pset(p) = {invalid}

// merge pset(p) = {invalid}

*p = 1; // ERROR, p was invalidated when j went out of scope

 // at line A. Solution: increase j’s lifetime, or

 // reduce p’s lifetime

if(cond) *p = 2; // ERROR, (same diagnostic) even if cond is unchanged

A dereferenced pointer must be valid on all non-data-dependent control flow paths in the function leading to

the dereference.

Note The case if(cond) *p; is still an error because the rules must be portable (they must give the

same answer for the same code across implementations without requiring implementations to

perform data-dependent reasoning or be omniscient) and the fix is simple in most cases (increase or

decrease the lifetime of a specifically named local variable).

Example 3.3: Invalidation in neither branch
A pointer can be assigned differently on different branches and still be valid after the branches merge. For

example:

int* p = nullptr; // pset(p) = {null}

int i = 0;

{

 int j = 1;

 if(cond) {

 p = &i; // pset(p) = {i}
 *p = 42; // ok

 } // no invalidation

Page 13 of 45

 else {

 p = &j; // pset(p) = {j}

 *p = 42; // ok
 } // no invalidation

 // merge pset(p) = {i,j}

 *p = 42; // ok

}

4. Loops
A loop is treated much like an if, because as with an if there are only two paths to analyze: taken (the loop

was entered at least once), and not taken (the loop was not entered). We do not do flow-sensitive analysis.

However, processing a loop can require a second pass:

 We take one pass through to determine any changes to psets used in the loop (on any path, as usual).

This determines the full set of psets affected on exit from any loop iteration.

 (Optional) If the exit set of psets used in the loop is different from the entry set , we do one additional

pass through the loop source starting with the new set of psets to ensure that a subsequent loop

iteration cannot rely on an invalidated pset modified during a previous loop iteration.

Note that this algorithm remains linear – we take at most two passes through the loop body.

Example 4.1: Loops that do not change psets
Some loops do not change psets used in the loop. For example:

p = &a[0]; // pset(p) = {a}

for(/*...whatever...*/) {

 // ...

 if(/*...whatever...*/) {

 // ...

 p = &a[i]; // pset(p) = {a}

 // ...

 }
 // ...

}

merge: pset(p) = {a} /*before loop*/ {a} /*after loop body*) = {a}

*p; // ok

In this case, the set of dependencies on input and output did not change and no further action is needed.

Example 4.2: Loops that do change psets
If instead p could be pointed to another object during the loop, we would take the exit pset and then parse the

loop exactly one more time treating them as entry dependencies to ensure the loop body did not rely on an

invalidatable dependency. For example:

p = &a[0]; // pset(p) = {a}

for(/*...whatever...*/) {

 // ...

Page 14 of 45

 if(/*...whatever...*/) {

 // ...

 p = &b[i]; // pset(p) = {b}
 // ...

 }

 // merge pset(p) = {a,b}

 // ...

}

merge: pset(p) = {a} /*before loop*/ {b} /*in loop body*) = {a,b}

// that’s different from entry, so parse loop one more time with {a,b}:

for(/*...whatever...*/) {

 // ...

 if(/*...whatever...*/) {

 // ...

 p = &b[i]; // pset(p) = {b}

 // ...

 }

 // merge pset(p) = {a,b} again/still

 // ...

}

// pset(p) = {a,b} still

Example 4.3: Loops that invalidate
If the loop body could invalidate, we get a possibly invalid exit dependency:

p = &a[0]; // pset(p) = {a}

for(/*...whatever...*/) {

 *p;

 p = nullptr; // A: pset(p) = {null}

 // ...

 if(/*...whatever...*/) {

 // ...

 p = &b[i]; // pset(p) = {b}

 // ...

 }

 // merge pset(p) = {null,b}

 // ...

}

merge: pset(p) = {a} /*before loop*/ {null,b} /*loop body*/ ={null,a,b}

// that’s different from entry, so parse loop one more time with {null,a,b}:

for(/*...whatever...*/) {

 *p; // ERROR, could be null from assignment to p at

 // line A in a previous iteration

 p = nullptr; // A: pset(p) = {null}
 // ...

 if(/*...whatever...*/) {

Page 15 of 45

 // ...

 p = &b[i]; // pset(p) = {b}

 // ...
 }

 // merge pset(p) = {null,b}

 // ...

}

// pset(p) = {null,a,b} still

Example 4.4: Loops that allocate
Some loop bodies allocate:

p = &a[0]; // pset(p) = {a}

bool must_delete = false;

for(/*...whatever...*/) {

 // ...
 if(/*...whatever...*/) {

 // ...

 p = new A // A: pset(p) = {temp'}

 ; // KILL(temp) pset(p) = {invalid}

 // ERROR: no delete of owner<> returned from new

 must_delete = true;

 // ...
 }

 // ...

}

if(p) *p = 42; // ERROR, invalidated by assignment to p on line A

 // (note conservative rule, because we don’t accept

 // owning raw * unless annotated owner<>

if(must_delete)

 delete p; // ERROR, delete of non-owner<> is not lifetime-safe

Solution: Have more than one pointer. In this case a unique_ptr is appropriate and replaces the explicit flag,

so we net out to zero additional variables (and less code since we can omit the explicit fragile delete check).

p = &a[0]; // pset(p) = {a}

unique_ptr<A> up; // initially null

for(/*...whatever...*/) {

 // ...

 if(/*...whatever...*/) {
 // ...

 p = (up = new A).get(); // ok, pset(p) = {up'}

 // ...

 }

 // merge: pset(p) = {a, up'}

 // ...
}

Page 16 of 45

merge: pset(p) = {a} /*before loop*/ {a,up'} /*loop body*/ = {a,up'}

// that’s different from entry, so parse loop one more time with {a,up'}:

for(/*...whatever...*/) {

 // ...

 if(/*...whatever...*/) {
 // ...

 p = (up = new A).get(); // ok, pset(p) = {up'}

 // ...

 }

 // merge: pset(p) = {a,up'}

 // ...

}

// pset(p) = {a,up'} still

if(p) *p = 42; // ok

5. null
When a branch can be entered only on success of an explicit test for p being not the null pointer constant

(regardless of the complexity of the conditional expression), we remove the null dependency in that branch.

Determining whether a particular conditional subexpression is required to enter a branch is done “as if” by the

conditional expression were rewritten as follows, applied recursively until fully simplified:

 A branch of the form if(a && b){…} is treated as if(a){ if(b){…}}.

 A branch of the form if(a || b){…} is treated as if(a){ if(b){} else{…}}.

 A conditional expression involving a constexpr function does not evaluate the constexpr function

unless that evaluation is required by the language (i.e., appears in a constexpr context).

 A conditional expression of the form arr[i] for an array arr is treated as testing pset(arr).

Example 5.1: Removing null from a pset to dereference successfully
For example, if a Pointer might be null, code can test for non-null and then use the pointer:

int* p = nullptr; // A: pset(p) = {null}

int i = 0;

if(cond) {

 p = &i; // pset(p) = {i}

}

// merge: pset(p) = {null,i}

*p = 42; // ERROR, p could be null from line A

if(p) { // remove null in this branch pset(p) = {i}

 *p = 42; // ok, pset(p) == {i}

}

// here, outside the null testing branch, pset(p) is still {null,i}

Page 17 of 45

Example 5.2: Replacing null in a pset with a valid object
For example, if a Pointer might be null, code can test for null and replace it with non-null. Here “…” means any

other set contents:

int i = 0;

p = /*something*/; // pset(p) = {null, ...}

if(!p) { // in this branch, pset(p) = {null}

 p = i; // pset(p) = {i}

}

// NOTE: in implicit “else”, pset(p) = {...}

// merge pset(p) = {i} {...}

p->foo(); // ok, pset(p) does not contain null

6. throw and catch

Example 6.1: catch
A try block is treated much like any other block, but a catch block is treated specially. Without statically

knowing where the exception was raised, we treat the catch block as if it could have been entered from every

point in the try block where an exception could have been raised. Thus we record all potential invalidations in

the try block (as any of them may have executed) and remove any revalidations in the try block (as potentially

none of them have executed.)

Note Asynchronous exceptions are orthogonal to this question.

This case is a clear win and we expect this to catch many mistakes.

int i = 0;

int *p1 = &i, *p2 = p1;

try {

 int j = 0;

 p1 = &j; // A: pset(p1) = {j}

 f();
 p1 = &i; // pset(p1) = {i}

 g();

 p2 = &j; // B: pset(p2) = {j}

} // KILL(j) pset(p2) = {invalid} in normal control flow

catch(...) { // merge try’s invalidations, ignore try’s revalidations

 *p1 = 42; // ERROR, invalidated by assignment to p1 on line A

 *p2 = 42; // ERROR, invalidated by assignment to p2 on line B

}

Example 6.2: throw
Unlike a return, the type of an thrown object cannot be carried through function signatures. Therefore, do not

throw a Pointer with lifetime other than static. For example:

static gi = 0;

Page 18 of 45

void f() {

 int i = 0;

 throw &i; // ERROR
 throw &gi; // OK

}

7. Calling functions: Arguments and in/inout parameters
By default, objects and indirections passed to a function are assumed to be independent. This means that:

 In the function body, by default a Pointer parameter param is assumed to be valid for the duration of

the function call and not depend on any other parameter, so at the start of the function pset(param)

= param (its own lifetime) only.

 At a call site, by default passing a Pointer to a function requires that the argument’s pset not include

anything that could be invalidated by the function.

Example 7.1: Passing indirections
For example:

// In function bodies

//

void f(int* p) {
 // pset(p) = {p}

 p = something_else;

 // ... now pset(p) something else

 // ...

}

void g(shared_ptr<int>& s, int* p);
 // pset(p) = {p}

 s = something_else; // KILL(s') no local effect, does not kill p

 // pset(p) = {p}, still

 // ...

}

// At call sites
//

int gi = 0;

shared_ptr<int> gsp = make_shared<int>();

int main() {

 // passing global and local objects

 f(&gi); // ok, pset(arg) == {gi}, and gi outlives the call

 int i = 0;

 f(&i); // ok, pset(arg) == {i}, and i outlives the call

 f(gsp.get()); // ERROR, pset(arg) == {gsp'}, and gsp is mutatable by f

 auto sp = gsp;

Page 19 of 45

 f(sp.get()); // ok, pset(arg) == {sp'}, and sp is not mutatable by f

 g(sp, sp.get()); // ERROR, pset(arg2) == {sp'}, and sp is mutatable by f

 g(gsp, sp.get()); // ok, pset(arg2) == {sp'}, and sp is not mutatable by f
}

Note This diagnoses the #1 correctness error using smart pointers, and with a clear message highlighting

the key variable names. (The #1 performance error using smart pointers is covered under the

foundation coding guidelines profile, which diagnoses needlessly passing smart pointer copies.)

Example 7.2: Explicitly overriding defaults
Sometimes you want to override the defaults. For example, consider two standard container member functions:

 The insert-with-hint insert(iter,t) assumes that the iterator is into this container, which is not

the default (and would not be allowed by the earlier rule that iter could be invalidated by this

insert). We can express this using [[lifetime(this)]].

 The range-based insert insert(iter1,iter2) assumes that the passed iterators are not into this

container, which is the default. It also assumes that iter1 and iter2 have the same lifetime, which is

not the default; we can express this using [[lifetime(iter1)]].

Result:

template<class Key, class T, /*...etc...*/>

class map {

 iterator insert(const_iterator pos [[lifetime(this)]],

 const value_type&);

 template <class InputIterator>

 void insert(InputIterator first,

 InputIterator last [[lifetime(first)]]);

 // ... more insert overloads and other functions ...

};

map<int,string> m = {{1,"one"}, {2,"two"}}, m2;

m.insert(m2.begin(), {3,"three"}); // ERROR, pset(m2.begin()) != {m}

m.insert(m.begin(), {3,"three"}); // ok, pset(m.begin()) == {m}

m.insert(m.begin(), m.end())); // ERROR, psets=={m'}, and m is mutatable

 // by m.insert [per earlier rule]

m.insert(m2.begin(), m.end())); // ERROR, psets are not equal

m.insert(m2.begin(), m2.end()); // ok, pset == {m2'}, and m2 is not
 // mutatable by m.insert

Note This statically diagnoses several common classes of STL iterator bugs.

8. Calling functions: Return values and out/inout parameters
The goal of these defaults is to minimize total annotation, and to be sound when both the caller and callee are

compiled separately under the lifetime profile. Any default lifetime that is incorrect will be diagnosed when

compiling the callee body.

Page 20 of 45

At the call site, when calling a function that produces (return value or out/inout parameter) a Pointer called ret,

by default pset(ret) is derived from the function’s Owner and Pointer arguments as in the following table.

If the only Owner arguments are passed by && or non-const&, then treat all owner const& parameters as-if

they were non-const&.

For each argument arg that matches one of the cases below, concatenate one entry into pset(ret) as shown;

if after thus processing the arguments pset(ret) is empty, then pset(ret) = {static}.

Notes:

 owner const& arguments are intentionally excluded by default. They are asking for rvalues.

 owner&& arguments are intentionally excluded always. They are begging for rvalues.

 “Indeterminate” means that arg is a this pointer in an overridable virtual function (neither the

function nor the class is final) in a class that is not a SharedOwner. This is considered indeterminate

because a further-derived class could change the indirection category of the type.

 pset(arg)’ means to add one ’ to every Owner in the set. For example, {a,b’,c’’,null}’ ==

{a’,b’’,c’’,null}.

arg is a Passed by pset(ret) = Examples

SharedOwner
of
UniqueOwner

value, & or &&

*

pset(arg)'

pset(*arg)'

int* f(shared_ptr<vector<int>>&);

int* f(shared_ptr<vector<int>>*);

SharedOwner
of other

value, & or &&

*

pset(arg)

pset(*arg)

int* f(shared_ptr<X>, shared_ptr<Y>&);

int* f(gc_ptr<int>*);

UniqueOwner
of
UniqueOwner

value, const&, &&

non-const &

*

{}

arg''

(*arg)''

int* f(vector<vector<int>>);

int* f(vector<vector<int>>&);

int* f(set<int>*);

UniqueOwner
of other

value, const&, &&

non-const &

*

{}

arg'

(*arg)'

int* f(vector<int>, const string&);

int* f(unique_ptr<int>&, string&);

int* f(set<int>*);

other Pointer value, & or &&

*

pset(arg)

pset(*arg)

int* f(int*, int*&);

int* f(int**);

indeterminate * (that is, this) {} struct base {
 virtual int* f();
};

Example 8.1: Owners
For example, consider shared_ptr<int>::get(), where the only argument is the this pointer to an owner:

auto sp = make_shared<int>(0);

int* p = sp.get(); // pset(p) = pset(sp.get()) == {sp'}

*p = 42; // ok

sp = make_shared<int>(1); // KILL(sp') pset(p) = {invalid}

Page 21 of 45

*p = 42; // ERROR

Example 8.2: std::min and std::max
Consider std::min, which returns one of its input references. (std::max is handled similarly.)

template<class T> // if T is not an Owner

const T& min(const T& a, const T& b) { // return pset = pset(a) pset(b)

 return a<b

 ? a // ok, pset(a) is within pset(a)pset(b)

 : b; // ok, pset(b) is within pset(a)pset(b)

}

template<class T> int* f(const T&);

auto sp = make_shared<vector<int>>(100);

f(sp); // pass: shared_ptr<vector<int>>& with pset == {sp}

 // return: pset = {sp'}

f(*sp); // pass: vector<int>& with pset == {*sp}

 // return: pset = {sp''}

f(sp->begin()); // pass: vector<int>::iterator& with pset == {sp''}

 // return: pset = {sp''}

f((*sp)[5]); // pass: int& with pset == {sp''}

 // return: pset = {sp''}

In calling code, this prevents known lifetime errors, including improving existing C++ code. For example, here is a

problem reported by a number of people including Andrei Alexandrescu: Because std::min returns a

reference, if a call to min(x,y) might change under maintenance to min(x,y+1) we could get a dangling

reference if min returns a reference to y+1, which would be invalidated when the temporary is destroyed after

the end of the call expression in which it appears:

int main() {

 auto x=10, y=2;

 auto& good = min(x,y); // ok, pset(good) == {x,y}

 cout << good; // ok, 2

 auto& bad = min(x,y+1) // A: IN: pset(arg1)=={x},
 // pset(arg2)=={temp(y+1)}

 // min() returns temp2

 // OUT: pset(temp2) = {x,temp}

 ; // KILL(temp) pset(temp2) = {invalid}

 // ERROR, initializing bad as invalid

 cout << bad; // ERROR, bad initialized as invalid on line A

}

In safe code, just attempting to create the bad reference is a build-time error. The reference is unusable and

cannot be rebound to make it usable; there is no reason to allow this.

In normal C++, this code compiles but has undefined behavior.

Page 22 of 45

Note In practice, on the three major compilers (gcc, VC++, clang) this code does not crash and appears to

work. That’s because one manifestation of “undefined behavior” can be “happens to do what you

expect.” Nevertheless, this is undefined and its appearance of working makes the error more

pernicious, not less so; slightly different examples will visibly break.

If this code had instead used max instead of min, therefore returning a reference to the first argument, there

would have been no undefined behavior in normal C++ but these rules (I think rightly) would still reject it as

statically unsound, having data-dependent safety.

Example 8.3: Explicitly overriding defaults
These defaults are useful and handle most cases, including std::min, std::move, std::forward, standard

containers’ member functions, standard algorithms, Meyers Singletons, and more. In cases where the function

does something different by returning a Pointer to an object accessed on another path, such as heap objects

accessed indirectly from static roots and new heap objects, explicitly write the pset using

[[lifetime(pset)]]. (See examples later in the paper, notably 8.2 and 10.)

Example 8.4: Return Pointer that must be invalid (e.g., to local)
In a function body, it is a lifetime error to return a pointer that must be invalid, either as a return value or

through an inout/out parameter.

int* f() {

 int i = 0;

 return &i; // pset(&i) = {i}, then KILL(i) pset(ret) = {invalid}

 // ERROR, cannot convert pset(ret)=invalid to ()

}

void g(int*& pi) {

 int i = 0;

 pi = &i; // pset(pi) = {i}

} // KILL(i) pset(pi) = {invalid}

 // ERROR, pi is non-const& so pset(pi) must be {} on exit,

 // and cannot convert {invalid} to {}

Example 8.5: Return indirection that may be invalid (e.g., to local)
In a function body, it is a lifetime error to return a pointer that could be invalid, either as a return value or

through an inout/out parameter.

int* f(int* pi) {

 int i = 0;

 return cond : pi : &i; // pset(expr)={pi,i}, KILL(i) pset(expr)={invalid}

 // ERROR, cannot convert pset(ret)={invalid} to {}

}

void g(int*& pi, int* pi2) {

 int i = 0;

 pi = cond ? pi2 : &i;

} // KILL(i) pset(pi) = {invalid}

 // ERROR, pi is non-const& so pset(pi) must be {} on

 // exit, and cannot convert invalid to {}

Page 23 of 45

Example 8.6: Calling a function that returns an indirection
int* f(); // pset(ret) = {static}

int main() {

 int* p = f(); // pset(p) = {static}

 *p = 42; // ok

}

Example 8.7: Indirection returned from an owner member
Copying a non-owner indirection object from an owner member mp implicitly carries with it pset = mp'.

class smart_ptr_to_int { // *this is an owner because ...

 owner<int*> p; // ... it contains something known to be an owner

public:

 int* get() const { // pset(ret) = {(*this)'} (this is a * to owner)

 return p; // pset(p) = {p'}

 }

 // ...

};

smart_ptr_to_int sp = /*...*/;

int* p = sp.get(); // pset(p) = {sp'}
*p = 42; // ok

sp = /*...*/; // KILL(sp') pset(p) = {invalid}

*p = 43; // ERROR, p was invalidated by assignment to sp on

 // line A (non-const operation on sp)

Note One operation that could invalidate the pointer and that can be called on a const pointer is

delete. Therefore, in the lifetime profile, delete of a const pointer is not permitted except in

the body of a destructor and then only if the pointer is a data member (and necessarily an owner

data member per the other rules).

Example 8.8: Owner of Pointer(s)
An owner of a non-owner has a pset, which applies to all the owned non-owners.

When the contained non-owner is assigned:

 If the owner o owns a single non-owner, such as with unique_ptr<int*>, the pset is replaced:

pset(o) = lifetime.

 If the owner o potentially owns more than one non-owner, such as with vector<int*>, the pset is

extended: pset(o) = pset(o) lifetime.

When the owner is assigned, the pset is replaced.

For example:

vector<int*> v;

void f() {
 int i;

 v.push_back(&i); // ERROR, v outlives {i}

Page 24 of 45

}

Example 8.9: Local Owner of Pointers
Consider this example:

void compute1(vector<T>& v)

{

 T* buf = new T*[10]; // bad style, but not uncommon
 // fill buf with pointers into v

 delete buf;

}

// this is not a problem because buf doesn't escape

Correct. The only required change would be that buf’s type must be owner<array_view<T>>.

Elaborated example:

void compute1(vector<T>& v)
{

 owner<array_view<T>> buf = new T*[10]; // Owner of Pointers

 buf[0] = &v[0]; // ok, pset(buf) += pset(&v[0]) == v'

 delete[] buf;

}

Example 8.10: Return Owner<> of Pointers
Consider this example:

T** compute1(vector<T>& v)

{
 T* buf = new T*[10]; // bad style, but not uncommon

 // fill buf with pointers into v

 return buf;

}

// this violates the "raw pointers do not own" rule, but doesn't

// actually leak pointers because buf's pointers are into v

Yes, both buf and the returned value must be owner<array_view<T>>.

Elaborated example:

owner<array_view<T>> compute1(vector<T>& v) // pset(ret) = {unref(v)'} by

default

{

 owner<array_view<T*>> buf = new T*[10]; // Owner of Pointers

 buf[0] = &v[0]; // ok, pset(buf) += pset(&v[0]) == v'

 return buf; // ok, every entry in pset promotes

}

Example 8.11: Return smart Owner of Pointers
Consider this example:

// Cleaner:

Page 25 of 45

unique_ptr<T*> compute1(vector<T>& v)

{

 auto buf = make_unique<T*[10]>(); // or whatever
 // fill buf with pointers into v

 return buf;

}

Yes, this works as written. Elaborated example:

unique_ptr<T*> compute1(vector<T>& v) // pset(ret) = {v'} by default

{

 auto buf = make_unique<T*[10]>(); // Owner of Pointers

 buf[0] = &v[0]; // ok, pset(buf) += pset(&v[0]) == v'

 return buf; // ok, every entry in pset promotes

}

9. Transferring ownership
Analogously with assignment from Pointers: When an Owner o1 is move-constructed or move-assigned to

another Owner o2 (of the same type), the ownership moves from o1 to o2, and so in all psets replace o1 with

o2.

vector<int> v1(100);

int* pi = &v1[0]; // pset(pi) = {v1'}

auto v2 = std::move(v1); // pset(pi) = {v2'} – note, no KILLs here

{
owning<int*> o1 = new int(0);

pi = *o1; // pset(pi) = {o1'}

auto o2 = release_owner(o1); // pset(pi) = {o2'} – note, no KILLs here

delete o2; // ok, must delete o2...

} // ... and this is also ok, need not (and may not) delete o1

10. Lifetime-const
In some cases, we will need to tag non-const member functions that are logically const for the purpose of

lifetime invalidation.

For example, given a vector<T> consider two non-const member functions, one of which invalidates

pointers/iterators into the vector and one of which doesn’t:

void push_back(const T& t) { // can move storage
 if (/*need to grow*/) {

 // ...

 data = /* some new buffer, and copy old data */;

 // ...

 }

 // ...
}

T& operator[](size_t n) [[lifetime(const)]] { // won’t move storage

 return data[n];

}

Page 26 of 45

We benefit by annotating operator[] to treat it as though it were const, because even though it is a non-

const operation, operator[] does not perform non-const operations on its structure – and therefore does

not invalidate references previously obtained from operator[] (or equivalently front(), etc.). If this is

communicated to the caller, then a caller that has a Pointer int* pi referring to an int inside a vector<int>

v can know that calling v[0] does not invalidate pi, while calling v.push_back(42); does invalidate pi.

Note It is debatable whether STL made the right design decision in not distinguishing structure from

contents – that is, failing to treat the container’s own structure distinctly from the contained

elements. But STL isn’t alone here, and many C++ libraries have followed such a convention; the

lifetime annotation provides a way to tactically add the arguably “missing” const. The STL might be

a better library if it treated vector<int> and vector<const int> distinctly; that is, the

constness of the elements is distinct from the constness of the container. Then vector would mark

operator[] as a const function; and a vector<int>::iterator could be allowed to convert

to a vector<const int>::iterator, avoiding the need for the const_iterator oddity.

Something to think about for STLv2.

 Granted, this complaint does not apply equally to map, which we consider next.

Similarly, given a node-based container map<T>, consider two non-const member functions, one of which

invalidates pointers/iterators into the map and one of which doesn’t:

/*…*/ erase(const T& t) { // can invalidate

 // ...

}

/*…*/ insert(const T& t) [[lifetime(const)]] { // won’t invalidate

 return data[n];

}

Note This is not the same structure-vs-contents situation as vector, but rather a node-based lifetime

semantics situation. However, the approach works the same way for lifetime invalidation purposes;

by saying “consider insert as a const operation for lifetime invalidation purposes” we express the

correct semantics, that erase is a function that should be assumed to invalidate pointers and

iterators into the container, but insert is not.

 In both cases, we will flag potential false positives: For vector, when push_back does not really

invalidate because of a careful earlier reserve we diagnose invalidation anyway, but such code is

arguably has data-dependent correctness so we feel correct in diagnosing it. For map, when erase

removes only one node (or a few) we diagnose invalidation of all pointers and iterators into the

map, not just ones to those nodes; this is a stronger conservatism and source of false positives.

Appendix 1: Applied examples and experiments

Additional examples

Local and returned pointers
Consider this example:

int* p1;

Page 27 of 45

int* f(int* p3, int i)

{

 int* p2 = &i;
 switch(i) {

 case 1: return p1;

 case 2: return p2; // BAD

 case 3: return p3;

 default: return nullptr; // a different problem

}

int* g()

{

 int x;

 auto p1 = f(&x,1); // global

 auto p2 = f(&x,2); // BAD
 auto p3 = f(&x,3); // local

}

Correct. Here’s how the example is processed:

int* p1; // pset(p1) is required to be always {static}

int* f(int* p, int i) // pset(ret) == pset(p)

{

 int* p2 = &i; // ok, pset(p2) = {i}

 switch(i) {

 case 1: return p1; // ok, {static} pset(p) (the default rules

 // assume f got the pointer from p)

 case 2: return p2; // ERROR, pset(ret) / {i}

 case 3: return p; // ok, pset(p) (what the default rules assume)
 default: return nullptr; // a different problem

}

Getting sneaky
Consider this example:

// This is getting sneaky

int* glob;

template<class T>

void steal(T x)

{
 glob = x();

}

void f()

{

 int i;

 steal([&]{ return &i; });
}

Page 28 of 45

int main()

{

 f();
 *glob = 7;

}

That’s sneaky all right.

Prelude: Recall how lambdas are generated. Given:

int i;

steal([&]{ return &i; });

The code with the generated lambda is essentially:

int i;

struct __lambda {

 int& __i;

 __lambda(int& i) :__i{i} {} // store reference
 auto operator(){ return &__i; }

};

steal(__lambda{i});

With that in hand, first consider f: The lambda just generates a class with an int& member; this makes the

lambda a Pointer. As we said earlier for array<T>::iterator, this has two effects: First, it allows conversion

from the reference parameter’s lifetime to the member variable, and it explicitly lets us infer that the lambda

constructed using this constructor is valid for the lifetime of i, so the iterator instance produced has validity

pset(*this) = pset(i).

void f()

{

 int i;

 steal([&] // ok, pset(lambda) = {i}

 { return &i; }); // ok, return &member, so pset(ret)={i}

}

However, steal contains an error, because the only legal assignment to glob would be something with a pset

known to be {static}.

template<class T>
void steal(T x)

{

 glob = x(); // ERROR, pset(x()) is not {static}

}

Return collection of pointers
Consider this example:

vector<int*> find_all(vector<int>& v, int i);

 // return pointers to elemnts of v with the value i

int* pp;

Page 29 of 45

int* f()

{

 vector<int> v = {1,2,3,4};
 auto r = find_all(v,3); // this is fine

 pp = r[0]; // this is not fine

 return r[0]; // this is not fine

}

vector<int> vv = {1,2,3,4};

int* f()
{

 auto r = find_all(vv,3); // this is fine

 pp = r[0]; // this is fine

 return r[0]; // this is fine

}

Yes, except for two corrections, both of which we can enforce:

 find_all should take the vector by reference.

 The second-last line is incorrect because pp could be invalidated by modifying vv. It would be legal if vv

were const.

Here is an elaborated example:

vector<int*> find_all(vector<int> v&, int i) { // pset(ret) = {v'} by default

 vector<int*> ret;

 for (auto& e : v)

 if (e == i)

 ret.push_back(&e); // pset(ret) += {v'}

 return ret; // ok, psets match

}

int* pp;

int* f() // pset(ret) = {static} by default

{
 vector<int> v = {1,2,3,4};

 auto r = find_all(v,3); // ok, pset(r) = {v'}

 pp = r[0]; // ERROR, can’t expand {v'} to {static}

 return r[0]; // ERROR, can’t expand {v'} to {static}

}

vector<int> vv = {1,2,3,4};

int* f() // pset(ret) = {static} by default

{

 auto r = find_all(vv,3); // ok, pset(r) = {vv'}

 pp = r[0]; // ERROR, can’t expand {vv'} to {static}

 return r[0]; // ERROR, can’t expand {vv'} to {static}

}

But add const and the second part works:

Page 30 of 45

const vector<int> cv = {1,2,3,4};

const int* f() // pset(ret) = {static} by default

{
 auto r = find_all(cv,3); // ok, pset(r) = {cv'}

 pp = r[0]; // ok, {cv'} + const cv can expand to {static}

 return r[0]; // ok, {cv'} + const cv can expand to {static}

}

Implementing and using std::unique_ptr for single objects
The following is intended to be a completely lifetime-safe implementation of unique_ptr. For exposition,

we omit machinery like the deleter which can also be expressed in a safe way.

Note For convenience, this code uses the move_owner and release_owner helpers, but these are not

required. The code could with equal validity perform the naked deleting/assignment/null-setting

suboperations explicitly.

Declaration and data
The class begins as usual, using owner to declare the ownership of the pointer.

template<class T>

class unique_ptr {

 owner<T*> p = nullptr;

Dereferencing: get, operator->, and operator*
The dereferencing operations just work.

public:

 T* get() const { // pset(ret) = {(*this)'} (by default)
 return p; // pset(p) = {(*this)'} (because it’s a member)

 }

 T* operator->() const { // pset(ret) = {(*this)'}

 Expects(p != nullptr);

 return p; // pset(p) = {(*this)'}

 }

 T& operator*() const { // pset(ret) = {(*this)'}

 Expects(p != nullptr);

 return *p; // pset(p) = {(*this)'}

 }

Aside: Potential new implicit conversion operator T*
Note that this means that smart pointers can now safely offer an implicit conversion operator T*(). It is a

well-known (and often lamented) problem that smart pointers like unique_ptr<T> must not offer implicit

conversions to T*, which is otherwise desirable for usability and substitutability, for two reasons that no longer

apply in safe code:

 First, the lifetime issue: In unsafe code it is too easy to get a pointer without realizing we must take

care that it does not dangle. This is not a problem under this proposal in lifetime-safe code, because

Page 31 of 45

we now track lifetimes by default and can prevent use of a dangling pointer, and so such incorrect uses

would fail to build with a clear error message.

 Second, the bounds arithmetic issue: In unsafe code it is too easy for unintended and incorrect code to

accidentally work when smartptr converts implicitly to T*. For example, the code smartptr + 42

could convert smartptr to T* and then invoke the built-in + that takes T* and int, which was

unintended, logically wrong, and potentially seriously wrong because it incidentally produces a wild

pointer which in a slightly more complex example could further be silently dereferenced (e.g.,

*smartptr + 42 vs. *(smartptr + 42)). However, this is not a problem in bounds-safe code

because pointer arithmetic is banned in the bounds profile, and so such incorrect uses would fail to

build with a clear error message.

The only drawback to taking advantage of this is that a smart pointer that relies on this safety to provide an

implicit conversion to T* will be unsafe if called from non-bounds-safe or non-lifetime-safe code. Therefore the

operator must be marked as available only when both the bounds and lifetime profiles are in effect.

So we could consider inserting the new convenience function:

 operator T*() const [[enable_if_profiles(lifetime && bounds)]] {

 return p;

 }

Notes This would be a departure from profiles being strictly subsets, as this would be an extension

available only under the listed profiles. The spelling of enable_if_profiles is bikesheddable.

 However, note how elegantly this matches the concept mentioned earlier in the owner<> section

that an owner<T*> should be thought of as being an unencapsulated unique_ptr<T>: The

lifetime safety rules do permit an implicit conversion from an owner<T*> object named o to a

non-owner T* with pset o'. That operation is the equivalent of the above.

Special member functions: Construction, destruction, copying, and moving
Consider construction and destruction:

 unique_ptr() = default;

 ~unique_ptr() { delete p; }

This works because p is an owner<T*>. Note that the delete is impossible to forget: Without it, ~unique_ptr

would fail to build with the error that the owner<T*> p was not deleted.

Note On the other hand, if the type of p were instead a plain T*, the delete would be an error because

explicit delete is not permitted in lifetime-safe code.

Copying is disabled and uninteresting:

 unique_ptr(unique_ptr&) = delete;

 unique_ptr& operator=(unique_ptr&) = delete;

Let’s finish the special member functions by considering the move operations, which manually manipulate

lifetimes but do so in a safe and checkable way.

 unique_ptr(unique_ptr&& other)
 : p{ release_owner(other.p) }

Page 32 of 45

 { }

 unique_ptr& operator=(unique_ptr&& other) {

 p = move_owner(p, other.p);
 }

reset and release
Next, consider reset, which adopts a previously-owning raw pointer. This is inherently a lifetime-unsafe

“trust me” function for two reasons: first, because owning raw pointers are always lifetime-unsafe; and

second, because allowing implicit adoption would enable adopting the same raw pointer by multiple

unique_ptrs which is lifetime-unsafe (e.g., would lead to double delete). If we try to write the usual

lifetime-unsafe code, we’ll get an error – the compiler is telling us that this is an unsafe operation:

 // BAD naïve implementation, build time errors

 void reset(T* ptr = nullptr) {

 T* old = p; // pset(old) = {p'}

 p = ptr; // KILL(p) pset(old) = {invalid}

 // ERROR, p outlives ptr

 delete old; // ERROR, old invalid, and delete of non-owner

 }

We could just suppress the lifetime profile on these two lines, but the correct solution is just to annotate that

the parameter is an owner, because we are going to take ownership: Not only will this will prevent lifetime-

safe calling code to pass the same pointer to reset on two unique_ptrs, which is desirable because having

two unique_ptrs adopt the same object would be wrong, but it makes the body just work (though for

convenience we’ll use move_owner):

 // Corrected implementation

 void reset(owner<T*> ptr = nullptr) {

 move_owner(p, ptr);
 }

Note Again this is a parallel with owner<T*> which does not allow assignment from a (non-owning) T*.

The constructor from T* does the same:

 unique_ptr(owner<T*> ptr)

 : p{ release_owner(ptr) }

 { }

Similar reasoning applies to release: We annotate the return type with owner<>, which does not change the

type, and this not only correctly documents that ownership is being moved to the caller, but it removes the need

to suppress lifetime safety rules.

 owner<T*> release() {
 return release_owner(p);

 }

swap
Finally, consider swap.

Page 33 of 45

 void swap(unique_ptr& other) {

 std::swap(p, other.p);

 }

Example: From StackOverflow
An hour before I was about to add a usage example here of how the above rules and implementation of

unique_ptr detect lifetime errors, the following was posted on StackOverflow, so let’s use this example.

unique_ptr<A> myFun()

{

 unique_ptr<A> pa(new A());
 return pa;

}

const A& rA = *myFun();

This code compiles but rA contains garbage. Can someone explain to me why is this code invalid?

Under this lifetime profile, the rules mechanically diagnose the problem and give the answer. The convention

in this paper is to diagnose the problem at the point the code attempts to use the invalidated local pointer or

reference, and so we have the ability to :

const A& rA = *myFun(); // A: ERROR, rA is unusable, initialized with invalid

 // reference (invalidated by destruction of the
 // temporary unique_ptr returned from myFun)

use(rA); // ERROR, rA initialized as invalid on line A

In the first line, myFun returns a temporary unique_ptr (call it temp_up), then unary * returns a temporary

reference temp_ref with pset(temp_ref) = temp_up', then temp_up is destroyed which implies

KILL(temp_up) pset(temp_ref) = invalid, and finally that is copied to initialize pset(rA) =

invalid.

As noted earlier, we diagnose the error at the creation of the unusable reference, since references cannot be

reseated and so this initialization is just always nonsense.

The poster added a coda:

Note: if I assign the return of myFun to a named unique_ptr variable before dereferencing it, it works fine.

Indeed it does:

auto local = myFun(); // ok, local assumes ownership

const A& rA = *local; // ok, pset(rA) = {local}

use(rA); // ok, we know that local is keeping rA alive

Implementing gc_ptr<T>
Let’s imagine we want a new smart pointer type called gc_ptr that points into garbage-collected memory. The

implementation is similar to unique_ptr, except that gc_ptr is copyable so it needs a raw_shared_owner.

Also, it deliberately does not delete the raw_shared_owner in its own member functions, so we have to be

able to express those semantics.

http://stackoverflow.com/questions/30858850/dereferencing-a-temporary-unique-ptr

Page 34 of 45

template<class T>

class gc_ptr {

 raw_shared_owner<T*> p = nullptr;

public:

 T* get() const {

 return p;

 }

 T* operator->() const {

 return p;
 }

 T& operator*() const {

 Expects(p != nullptr);

 return *p;

 }

 operator T*() const [[enable_if_profiles(lifetime && bounds)]] {
 return p;

 }

 gc_ptr() = default;

Unlike unique_ptr, gc_ptr does not express unique ownership and so is copyable, and copying naturally

doesn’t modify the source object. Because it is efficiently copyable, it doesn’t need distinct move operations.

However, it doesn’t delete its owner member, so we have to [[suppress(lifetime)]] to say that’s okay:

 ~gc_ptr() {

 p = nullptr; // ok for raw_shared_owner<>

 }

 gc_ptr(const gc_ptr& other) {

 p = other.p; // ok for raw_shared_owner<>

 }

 gc_ptr& operator=(gc_ptr& other) {

 p = other.p; // ok for raw_shared_owner<>

 }

Note that reset and release do not make sense for gc_ptr, so we omit them. And swap is unchanged:

 void swap(gc_ptr& other) {

 swap(p,other.p);

 }

Implementing unique_ptr<T[]> for arrays
The specialization unique_ptr<T[]> for arrays is similar, but let’s do a small upgrade to use an array_view

for bounds safety.

template<class T, /*...*/> class array_view; // more on this later

template<class T>

class unique_ptr<T[]> {

Page 35 of 45

 owner<array_view<T>> av;

public:

 array_view<T> get() const {
 return av;

 }

Note As an additional improvement for bounds safety, I chose to change the return type of get() to

array_view<T>. Returning a raw T* would not be that useful under the bounds profile where the

pointer could be used only as a pointer to a single object.

 If we want strict compatibility with the current standard unique_ptr<T[]> interface, we could

alternatively provide

 T* get() const {

 return av.data();

 }

 but adopting the return type change above adds better bounds safety; in bounds-safe code the

returned T* would be usable only as a pointer to a single object.

Instead of operator-> and operator*, the array version of unique_ptr provides operator[]:

template<class T>

T& unique_ptr<T[]>::operator[](size_t pos) const { // pset(ret) = {(*this)'}

 Expects(pos < av.size());

 return av[pos];
}

The expression av[pos] gives a T& to an element of the array_view whose owner is the same as the owner

of the array_view, namely *this.

Note Because the returned T& is lifetime-safe, combined with av also providing bounds-safety, we

have complete memory safety for the returned T&.

Aside: Similarly to unique_ptr for single objects, we can provide an implicit conversion to array_view, which

is safe to use if the caller is lifetime-safe (note bounds does not need to be required this time).

 operator array_view<T>() const [[enable_if_profiles(lifetime)]] {

 return av;

 }

The next few functions are essentially unchanged:

 unique_ptr() = default;

 ~unique_ptr() {

 delete[] av.data();

 }

 unique_ptr(unique_ptr&) = delete;

 unique_ptr& operator=(unique_ptr&) = delete;

 unique_ptr(unique_ptr&& other) {

Page 36 of 45

 : av{ release_owner(other.av) }

 { }

 unique_ptr& operator=(unique_ptr&& other) {
 delete[] av.data();

 av = release_owner(other.av);

 }

 void reset(owner<array_view<T>> view = nullptr) {

 delete[] av.data();

 av = release_owner(view);
 }

 owner<array_view<T>> release() {

 return release_owner(av);

 }

 void swap(unique_ptr& other) {

 std::swap(p, other.p);
 }

Implementing std::array<T>::iterator
Now let’s try containers and iterators.

Our focus will be on the iterator, so consider just a minimal subset of std::array, and how to implement its

iterator to be lifetime-safe. Note array can happily remain an aggregate.

template<class T, std::size_t N>
class array {

 T[N] data;

public:

 T& operator[](std::size_t pos) {

 Expects(pos < N); // (for bounds safety profile)

 return data[pos]; // pset(ret) = {*this}
 }

Now consider writing a new indirection: array<T,N>::iterator.

 class iterator {
 array* a;

 int pos = 0;

Now we can infer something useful:

 iterator(array& arr) : a{&arr} { }

We know that iterator is a Pointer because it contains one. This has two effects: First, it allows conversion

from the reference parameter’s lifetime pset(arr) to the member variable which would otherwise be a build

time error because the lifetimes are unrelated. Second, and more significantly, it explicitly lets us infer that the

iterator constructed using this constructor is valid for the lifetime of arr, so the iterator instance produced has

validity pset(*this) = pset(arr).

By capturing that *this refers to arr, it also changes the default lifetime of a returned pointer:

Page 37 of 45

 public:

 T& operator*() const {

 Expects(pos < N);
 return a->data[pos]; // pset(ret) = {*a}

 }

 // ... ++, --, etc.

 }

 iterator begin() noexcept { // pset(ret) = {*this}

 return iterator(*this);
 }

 // ...

};

Now consider the calling code:

array<int,100> array1;

int* ptr = nullptr; // pset(ptr) = {null}

{

 auto i = array1.begin(); // pset(i) = {array1}

 auto j = i; // pset(j) = {array1}

 {

 array<int,100> array2;

 i = array2.begin(); // repointed, so now pset(i) = {array2}

 *i = 42; // ok

 } // A: KILL(array2) pset(i) = {invalid}

 *i = 42; // ERROR, i was invalidated on line A

 i = array1.begin(); // pset(i) = {array1}
 *i = 42; // ok, now i is usable again

 *j = 42; // ok

 ptr = &*j; // ok, pset(ptr) = {array1}

 ++j;

}

*ptr = 42; // ok: ptr’s validity not tied to j

Implementing array_view
Now let’s try a simplified array_view.

template<class T> class array_view {
 T* a;

 int size = 0;

public:

 template<std::size_t N>

 array_view(std::array<T,N>& arr) : a{&arr[0]}, size{N} { }

 // pset(*this) = pset(arr)

Page 38 of 45

Again, the non-owner member enables conversion from the reference parameter’s lifetime to the member

variable, and lets us infer that the view constructed using this constructor is valid for the lifetime of &arr[0]

which is the same as arr, so the view instance produced has pset(*this) = arr'.

Here are a few more functions, and for exposition let’s just call all the parameters arr:

 template<std::size_t N>

 array_view(T (arr&)[N]) : a{&arr[0]}, size{N} { }

 // pset(*this) = pset(arr)

 template<std::size_t N>

 array_view(std::vector<T> arr) : a{&arr[0]}, size{arr.size()} { }

 // pset(*this) = pset(arr')

Let’s throw in the copy constructor (the compiler-generated one would do the same thing):

 array_view(const array_view& other) : a{other.a}, size{other.size} { }

 // *this copies pset from other

By capturing that *this refers to arr, it also changes the default lifetime of a returned pointer:

 T& operator[](int pos) const {

 Expects(pos < size);

 return a[pos]; // pset(ret) = {owners-of-this-object}

 }

 // ... ++, --, etc.

};

Now consider the calling code, and note how we naturally distinguish between array directly owning its

memory (valid for the lifetime of the array) vs. vector indirectly owning its memory (valid until the vector is

destroyed or modified):

array<int,100> array1;

int* ptr = nullptr; // pset(ptr) = {null}

{

 array_view<int> i = array1; // pset(i) = {array1}

 array_view<int> j = i; // pset(i) = {array1}

 {

 vector<int> array2(100);
 i = array2; // repointed, so now pset(i) = {array2'}

 i[0] = 42; // ok

 array2.push_back(1); // A: KILL(array2') pset(i) = {invalid}

 i[0] = 42; // ERROR, i invalidated by push_back on line A

 }

 i = array1; // pset(i) = {array1}

 i[0] = 42; // ok, now i is usable again

 j[0] = 42; // ok

 ptr = &j[0]; // ok, pset(ptr) = {array1}

}

Page 39 of 45

*ptr = 42; // ok: ptr’s validity not tied to j

Implementing std::vector<T>::iterator
Consider just a minimal subset of std::vector, and how to implement its iterator to be lifetime-safe.

This adds two twists over the std::array case from earlier:

 vector adds a level of indirection because the data is on the heap rather than as a member variable,

and so the lifetimes are shorter because the heap data can be replaced.

 This code exercises composability, because we’re going to try to reuse another owner type. Two

candidates are unique_ptr<T[]> for arrays, and owner<array_view<T>>. Let’s do the former.

Starting off:

template<class T>
class vector {

 unique_ptr<T[]> data;

public:

 T& operator[](std::size_t pos) { // pset(ret) = {(*this)'}

 return data.get()[pos];

 }

And now vector<T>::iterator.

 class iterator {

 vector* v;
 int pos = 0;

 iterator(vector& vec) : v{&vec} { }

 public:

 T& operator*() const {

 return v[pos]; // pset(ret) = {(*v)'}

 }

 // ... ++, --, etc.

 }

 iterator begin() noexcept { // pset(ret) = {(*this)'}

 return iterator(*this);

 }

Now consider the calling code:

vector<int> array1(100);

int* ptr = nullptr; // pset(ptr) = {null}

{

 auto i = array1.begin(); // pset(i) = {array1'}

 auto j = i; // pset(j) = {array1'}

 {

 vector<int> array2(100);

 i = array2.begin(); // repointed, so now pset(i) = {array2'}

Page 40 of 45

 *i = 42; // ok

 array2.push_back(1); // A: KILL(array2') pset(i) = {invalid}

 *i = 42; // ERROR, i was invalidated by

 // “array2.push_back” on line A

 }

 i = array1.begin(); // pset(i) = {array1'}

 *i = 42; // ok, now i is usable again

 *j = 42; // ok

 ptr = &*j; // ok, pset(ptr) = {array1'}

 ++j;

}

*ptr = 42; // ok: ptr’s validity not tied to j

Implementing a tree-based container

Handing out references
Transitive shared_ptrs maintain ownership. Note that using raw local * variables eliminates needless

reference counting overhead.

template<class T>

class tree {
 shared_ptr<Node> root;

 struct Node {

 T data;

 shared_ptr<Node> left, right;

 weak_ptr<Node> parent;

 };

public:

 shared_ptr<T> get_root() { // as a simple example

 assert(root.get()); // ok, pset(root.get()) = {root'}

 return shared_ptr<T>(root, root->data);

 // pset(ret) = {root'}

 }

Note that this is safe because of the lifetime root' on the second argument.

 shared_ptr<T> get_leftmost_slow() { // another simple example

 auto p = root;

 assert(p);
 while (p->left) p = p->left;

 return shared_ptr<T>(p, p->data);

 }

 shared_ptr<T> get_leftmost_fast() { // another simple example

 Node* p = root.get(); // pset(p) = {root'}, not copying root

 assert(p);
 while (p->left)

Page 41 of 45

 p = p->left.get(); // pset(p) = {root''}

 return shared_ptr<T>(p, p->data);

 }
};

Note that the last line in each function does this, without annotation:

 return shared_ptr<T>(p, p->data);

How can this constructor call be lifetime-safe? This is the shared_ptr(r,ptr) aliasing constructor, where

“to avoid the possibility of a dangling pointer, the user of this constructor must ensure that p remains valid at

least until the ownership group of r is destroyed” [ISO C++], and “it is the responsibility of the programmer to

make sure that ptr remains valid as long as this shared_ptr exists, such as in the typical use cases where ptr

is a member of the object managed by r or is an alias (e.g., downcast) of r.get()” [cppreference.com]. By

now, all of that sounds familiar… we can spell it with a lifetime constraint:

template<class T, class Y>

shared_ptr<T>::shared_ptr(const shared_ptr<Y>& r, T *ptr [[lifetime(r')]]);

Not handing out references
If we don’t hand out references, unique_ptr suffices. Because we can’t use weak_ptr here for the parent

pointer, when we assign the parent pointer we need to say “trust me” via [[suppress(lifetime)]].

template<class T>

class tree {

 unique_ptr<Node> root;

 struct Node {

 T data;

 unique_ptr<Node> left, right;
 Node* parent;

 Node(Node& parent_) { [[suppress(lifetime)]] parent = &up; }

 };

public:

 T get_root() { // as a simple example – now by value
 assert(root.get());

 return root->data;

 }

 T get_leftmost() { // another simple example

 auto p = root.get(); // pset(p) = {root'}

 assert(p);
 while (p->left)

 p = p->left.get(); // pset(p) = {root''}

 return p->data;

 }

};

Page 42 of 45

Appendix 2: owner<> and raw_shared_owner<>
Note This is a portion of the forthcoming Section III draft to mention enough of the basic tools used

elsewhere in this paper, such as move_owner, so that this paper can be read in isolation. Details

such as whether have an array_ptr alias are still undergoing refinement.

array_ptr
For compatibility and migration of older code that uses T* and cannot convert to use a smart pointer, we

provide owner<T*> for a single object, and to distinguish pointer to arrays we provide the additional alias

array_ptr to be used as owner<array_ptr<T>>.

Let

template<class T, int N> using array_ptr = T*;

be an alias that designates the pointer points to an array of length N, and allow conversions:

 from array_ptr<T,N> to array_view<T,N>;

 from owner<array_ptr<T,N>> to owner<array_view<T,N>>; and

 from raw_shared_owner<array_ptr<T,N>> to raw_shared_owner<array_view<T,N>>.

Common rules
In the lifetime profile:

 new X returns an rvalue of type owner<X*>.

 new X[N] returns an rvalue of type owner<array_ptr<X,N>>.

 delete/delete[] cannot be called on any type except as permitted below.

 delete can be called on any owner<T> or raw_shared_owner<T>.

 delete[] can be called on owner<A> or raw_shared_owner<A> where A is an array_ptr or

array_view.

Notes owner<array_view<T,N>> is allowed as well and is preferred. However, array_ptr is more

compatible by being just an alias so that existing code using T* to point to an owned array can

switch to owner<array_ptr<T,N>>.

 As an extension, we could say that when T is an array_ptr, delete means to invoke delete[].

However, this is a semantic change that would require compiler implementation, whereas otherwise

these rules can be implemented in any source build step (not necessarily in a compiler).

 As a future extension to help C-style code, we could also consider providing some malloc

compatibility along the following lines:

 m_owner<X*> p = malloc(N) is legal iff sizeof(X)<=N and X is trivially constructible.

 m_owner<array_ptr<X,M>> p = malloc(N) is legal iff sizeof(X)*M<=N and X is trivially

constructible.

 m_owner<array_view<X,M>> p = malloc(N) is legal iff sizeof(X)*M<=N and X is

trivially constructible.

 free is available for all of these with the lifetime state effect of delete.

Page 43 of 45

Every owner<T> and raw_shared_owner<T> is always in one of the states {valid, invalid, null} and

obeys the following state transition tables. In those tables:

 DECLARE(x) means x is declared. Its initial value must be set as a separate step.

 END_LIFE(x) means that x is destroyed (e.g., a local variable at the end of its scope).

 ESCAPE(x) means that x leaves the local function scope (e.g., is a modifiable & parameter and we are

leaving the function body via return or throw).

Unique ownership: owner<>
owner<> is a type alias that allows legacy and lowest-level data structures using owning raw pointers with

unique ownership to be correctly identified as owners in an ABI-compatible way by not disturbing their type.

owner is intended to be principally used for single heap objects via owner<T*> and for heap arrays via

owner<array_ptr<T,N>> or owner<array_view<T>>.

In the lifetime profile, the following rules apply to owner<T>.

 T must be a non-owner indirection.

 An owner<T> obeys the following state transition table.

 Pre Post

DECLARE(o) (not applicable) o is invalid

o = new T o is invalid or null o is valid
o = o2 o is invalid or null

(no requirement on o2)
o is o2’s “pre” state
o2 is invalid

*o
o->

o is valid (no change)

&o o is in any state (no change)
delete o o is valid or null o is invalid

END_LIFE(o) o is invalid or null (not applicable)

ESCAPE(o) o is valid or null (not applicable)

 The following helpers to automate common usages to comply with the above table:

template<class T>

void move_owner(owner<T>& dst, owner<T>&& src)

 { delete dst; dst=src; src=nullptr; }

template<class T>
auto release_owner(owner<T>&& src) -> owner<T>

 { owner<T> tmp=src; src=nullptr; return tmp; }

 Constructing or assigning a T from an owner<T> o is like calling a smart pointer’s “get” and yields a T

with a pset of {o'}.

 Constructing or assigning an owner<T> from a T is not allowed.

Notes owner<T*> should be thought of as an unencapsulated unique_ptr<T>. That is, instead of

performing ownership operations (such as moving ownership or performing delete) within

encapsulated unique_ptr member functions, we expose the raw *, C++98-style, and require all

callers to share the responsibility of collaboratively implement the same semantics by hand.

Page 44 of 45

 Constructing or assigning an owner<T> from a T is not allowed because it is unsafe. For example,

code could copy the same pointer to two different owners, leading to eventual double delete.

 For code that has owning raw pointers that intends unique ownership, change the variable’s

declaration from T* to owner<T*> and then any lurking mistakes will start to be diagnosed at build

time.

Shared ownership: raw_shared_owner<>
raw_shared_owner<> is a type alias that is intended for use primarily inside the implementation of smart

pointers. raw_shared_owner is intended to be principally used for single heap objects via

raw_shared_owner<T*> and for heap arrays via raw_shared_owner<array_ptr<T,N>> or

raw_shared_owner<array_view<T>>.

Note The name is bikesheddable. This alias doesn’t necessarily need to be used for shared ownership, but

for any ownership convention that is not straight unique+new+delete ownership and so relies on

surrounding code that we cannot check for correct enforcement. Because it’s really “opaque” to the

lifetime rules, it should have an ugly name. Potential alternative names include: hidden_owner,

manual_owner, opaque_owner, raw_opaque_owner, trustme_owner, etc.

 We are considering initially restricting raw_shared_owner to be a private data member, for use

only in implementing non-unique owner library abstractions like shared_ptr and gc_ptr.

However, if there are many places where it could be useful in existing code, we may need to allow

its more widespread use despite its weaker guarantees.

In the lifetime profile, the following rules apply to raw_shared_owner<T>.

 T must be a non-owner indirection.

 A raw_shared_owner<T> obeys the following state transition table. Differences from the owner<>

state transition tables are highlighted. Note that there is a new row to allow setting a

raw_shared_owner from an owner o.

 Pre Post

DECLARE(s) (not applicable) s is invalid
s = o s is in any state s is o’s “pre” state

o is invalid
s = s2 s is in any state s is s2’s “pre” state

(no change to s2)
*s
s->

s is valid (no change)

&s s is in any state (no change)
delete s s is valid or null s is invalid

END_LIFE(s) s is in any state (not applicable)

ESCAPE(s) s is valid or null (not applicable)

 Constructing or assigning a T from a raw_shared_owner<T> s is like calling a smart pointer’s “get”

and yields a T with pset {s'}.

 Constructing or assigning a raw_shared_owner<T> from a T is not allowed.

Page 45 of 45

Note Unlike with owner<>, the raw_shared_owner<> rules do not by themselves guarantee freedom

from leaks (failure to delete) or multiple deletion. Basic shared indirection types are intended to

encapsulate a raw_shared_owner and then perform their own appropriate tracking, such as a

reference count or tracing collection, to ensure that delete is called exactly once. However,

because this responsibility is encapsulated within these few basic types, as long as their

implementations are correct the entire program is correct.

