
Static Analysis and C++

Neil MacIntosh

neilmac@microsoft.com

struct Thing {

int someInt;

int anotherInt;

};

Result InitializeThing(Thing* thing) {

// ... local declarations ...

// validate parameters

if (thing == nullptr)

return Result::InvalidParameter;

// initialize the structure to safe defaults

memset(&thing, 0, sizeof(Thing));

// ... do some other setup work...

return Result::Success;

}

CppCon 2015 Static Analysis and C++ 2

====> memset(thing, 0, sizeof(Thing));

Simple bug, hard to track down without help

thing.cpp(15) : warning CXXXX: Overflow using expression '(void *)(&thing)'
Buffer accessed is thing
Buffer is of length 4 bytes [size of variable]
Accessing 8 bytes starting at byte offset 0

The “lint” value proposition:

Find defects during construction: save time and money

• reduce the cost of locating and fixing them

• reduce their impact on your customers

CppCon 2015 Static Analysis and C++ 3

• So successful, many “lint” checks migrated into compilers as warnings
• so always compile with -Wall

• Lots of free, open source and commercial offerings for static analysis
of C++ source

• If you’re not seeing the value, complain! (or...contribute!)

CppCon 2015 Static Analysis and C++ 4

enum class States { Started, Stopped, Waiting, ... };

void StateMachine::OnStop() {

// ... see if it's ok to stop ..

m_current = States::Started;

// when we're stopped, we need to go wait for restart

if (m_current == States::Stopped) {

WaitForStart();

}

}

CppCon 2015 Static Analysis and C++ 5

machine.cpp(9) : warning CXXXX: suspicious code: branch is never entered,
condition always evaluates to false.

Scaling the “lint” value proposition

• Need fast turnaround while doing edit-build-debug cycle
• You want to be inside the developer’s “inner loop”

• Value must be obvious and actionable
• False positives are tolerable but cannot be overwhelming
• True positives must be comprehensible and real defects

• Broaden the search: not just safety/reliability bugs
• API enforcement is a valuable use (Secure CRT, deprecated Crypto....)
• Performance is increasingly interesting as a target

CppCon 2015 Static Analysis and C++ 6

Fast turnaround

• Tools must run quickly: slower than compiler ok, but not too much
• Running asynchronously with build helps a lot

• Parallel execution helps a lot

• Incremental build\analysis helps a lot

• Share common work – reuse construction costs

• Simple checks are best
• syntactic

• simple flow-sensitive

CppCon 2015 Static Analysis and C++ 7

struct Thing {

int someInt;

int anotherInt;

};

Result InitializeThing(Thing* thing){

// ... local declarations ...

// validate parameters

if (thing == nullptr) {

return Result::InvalidParameter;

}

// initialize the structure to safe defaults

memset(&thing, 0, sizeof(Thing));

// ... do some other setup work...

return Result::Success;

}

CppCon 2015 Static Analysis and C++ 8

AST_FUNCTIONCALL "memset" "void*(void*,int,unsigned int)"

AST_ARGUMENTS

AST_CAST "void*"

AST_ADDRESS "struct Thing**"

AST_SYMBOL “Thing" "struct Thing *"

AST_CONSTANT =0 "int"

AST_SIZEOFTYPE =8 "unsigned int"

enum class States { Started, Stopped, Waiting, ... };

void StateMachine::OnStop() {

// ... see if it's ok to stop ..

m_current = States::Started;

// when we're stopped, we need to go wait for restart

if (m_current == States::Stopped) {

WaitForStart();

}

}

CppCon 2015 Static Analysis and C++ 9

machine.cpp(9) : warning CXXXX: suspicious code: branch is never entered,
condition always evaluates to false.

Make defects obvious and actionable

• Use heuristics to restrict false positives.
• Success vs. failure paths.
• Do all roads lead to Rome?
• Context matters!

• Clear warning messages that include relevant detail

• Good diagnostic traces help

• Lots of scope for IDE and tool integration
• Automated fixups

CppCon 2015 Static Analysis and C++ 10

// Set of bitflags that control system features

enum SystemLevels {

// ...

};

const unsigned int g_flags = ENABLE_STANDARD_STUFF | ENABLE_OTHER_STUFF;

void Initialize() {

if (g_flags & ENABLE_COOL_STUFF) {

// ... enable the cool functionality ...

}

}

CppCon 2015 Static Analysis and C++ 11

Expression will evaluate to 0 at compile-time....by design!

Warning here will annoy users as creating “dead code” at compile-time based
on bit-wise expressions is a common (and useful) configuration technique.
So we are silent here.

// bitflags that control system features

enum SystemLevels {

ENABLE_COOL_STUFF,

ENABLE_OTHER_STUFF,

ENABLE_STANDARD_STUFF

};

const unsigned int g_flags = ENABLE_STANDARD_STUFF | ENABLE_OTHER_STUFF;

void Initialize() {

if (g_flags & ENABLE_COOL_STUFF) {

// ... enable the cool functionality ...

}

}

CppCon 2015 Static Analysis and C++ 12

config.cpp(11) : warning C6313: Incorrect operator: zero-valued flag cannot
be tested with bitwise-and. Use an equality test to check for zero-valued
flags.

Make defects obvious and actionable

• Use heuristics to restrict false positives
• Context matters! Success vs. failure paths.

• Clear warning messages that include relevant detail

• Good diagnostic traces help

• Lots of scope for IDE and tool integration
• Automated fixups

CppCon 2015 Static Analysis and C++ 13

// bitflags that control system features

enum SystemLevels {

ENABLE_COOL_STUFF,

ENABLE_OTHER_STUFF,

ENABLE_STANDARD_STUFF

};

const unsigned int g_flags = ENABLE_STANDARD_STUFF | ENABLE_OTHER_STUFF;

void Initialize() {

if (g_flags & ENABLE_COOL_STUFF) {

// ... enable the cool functionality ...

}

}

CppCon 2015 Static Analysis and C++ 14

config.cpp(11) : warning C6313: Incorrect operator: ENABLE_COOL_STUFF has
a value of zero. Testing it with bit-wise AND will always result in zero. You may
have meant to check for equality instead.

Make defects obvious and actionable

• Use heuristics to restrict false positives
• Context matters! Success vs. failure paths.

• Clear warning messages that include relevant detail

• Good diagnostic traces help

• Lots of scope for IDE and tool integration
• Automated fixups

CppCon 2015 Static Analysis and C++ 15

CppCon 2015 Static Analysis and C++ 16

What happens when we try to go further?

• No function is an island
• Need to understand what is happening across function calls

• Interprocedural analysis: analyze the whole program
• quickly run up against hard problems (NP hard)
• useful – but conflicts with desire to be close to the inner loop
• best reserved for very well-specified problems

• Other approach is intraprocedural analysis: analyze each function in
isolation
• need to understand the semantics for called functions
• infer based on heuristics, type system, source annotations

CppCon 2015 Static Analysis and C++ 17

// returns the number of bytes written to buffer or -1 on error

int MakePacket(int recLength, byte* rec, int bufSize, byte* buffer) {

int payloadLength = -1;

if (recLength < 3)

return -1;

payloadLength = (rec[1] << 8) + rec[2];

if (bufSize < payloadLength + 3)

return -1;

buffer[0] = rec[0];

buffer[1] = rec[1];

buffer[2] = rec[2];

if (memcpy_s(buffer + 3, bufSize - 3, rec + 3, payloadLength) != 0)

return -1;

return payloadLength + 3;

}
CppCon 2015 Static Analysis and C++ 18

// return number of bytes read\written from socket or < 0 on error

int OS::Socket::Read(byte* buf, size_t bufSize);

int OS::Socket::Write(byte* buf, size_t bufSize);

...

int rc = OS::Socket::Read(readBuffer.data(), readBuffer.size());

if (rc <= 0) return -1;

rc = MakePacket(readBuffer.size(), readBuffer.data(),
writeBuffer.size(), writeBuffer.data());

if (rc <= 0) return -1;

rc = OS::Socket::Write(writeBuffer.data(), rc);

if (rc <= 0) return -1;

...

CppCon 2015 Static Analysis and C++ 19

CppCon 2015 Static Analysis and C++ 20

Success(return >= 0) int MakePacket(int recLength, _In_reads_(recLength)
byte* rec, int bufSize, _Out_writes_to_(bufSize, return) byte* buffer) {

int payloadLength = -1;

if (recLength < 3)

return -1;

payloadLength = (rec[1] << 8) + rec[2];

if (bufSize < payloadLength + 3)

return -1;

buffer[0] = rec[0];

buffer[1] = rec[1];

buffer[2] = rec[2];

if (memcpy_s(buffer + 3, bufSize - 3, rec + 3, payloadLength) != 0)

return -1;

return payloadLength + 3;

}
CppCon 2015 Static Analysis and C++ 21

badpkt.cpp(16) : warning CXXXX: Potential read overflow using expression
'(const void *const)(rec + 3)‘. Buffer access is apparently unbounded by the
buffer size. In particular: (*rec)`8 is not constrained by recLength`2. (...)

// return number of bytes read\written from socket or < 0 on error

int OS::Socket::Read(byte* buf, size_t bufSize);

int OS::Socket::Write(byte* buf, size_t bufSize);

...

int rc = OS::Socket::Read(readBuffer.data(), readBuffer.size());

if (rc <= 0) return -1;

rc = MakePacket(readBuffer.size(), readBuffer.data(),
writeBuffer.size(), writeBuffer.data());

if (rc <= 0) return -1;

rc = OS::Socket::Write(writeBuffer.data(), rc);

if (rc <= 0) return -1;

...

CppCon 2015 Static Analysis and C++ 22

// return number of bytes read\written from socket or < 0 on error

Success(return >= 0) int OS::Socket::Read(
_Out_writes_to_(bufSize, return) byte* buf, size_t bufSize);

_Success_return >= 0) int OS::Socket::Write(_In_reads_(bufSize) byte* buf,
size_t bufSize);

...

int rc = OS::Socket::Read(readBuffer.data(), readBuffer.size());

if (rc <= 0) return -1;

rc = MakePacket(readBuffer.size(), readBuffer.data(),
writeBuffer.size(), writeBuffer.data());

if (rc <= 0) return -1;

rc = OS::Socket::Write(writeBuffer.data(), rc);

if (rc <= 0) return -1;

...CppCon 2015 Static Analysis and C++ 23

Pros and cons of annotations

• Suddenly, we can find subtle defects that previously eluded us

• Intentions are clearer and we can reduce false positives

• They are viral

• They are not source code

• They are a form of language extension

• Tools must interpret them – consistency is important

CppCon 2015 Static Analysis and C++ 24

CppCon 2015 Static Analysis and C++ 25

bool MakePacket(array_view<byte> rec, array_buffer<byte> buffer) {

if (recLength < 3)

return -1;

int payloadLength = (rec[1] << 8) + rec[2];

if (buffer.length() < payloadLength + 3)

return false;

buffer.set_used(payloadLength + 3);

buffer[0] = rec[0];

buffer[1] = rec[1];

buffer[2] = rec[2];

if (memcpy_s(buffer.data() + 3, buffer.length() - 3, rec + 3, payloadLength) != 0)

return false;

return payloadLength + 3;

}

CppCon 2015 Static Analysis and C++ 26

Can still catch error the same way.

bool MakePacket(array_view<byte> rec, array_buffer<byte> buffer)

{

if (rec.length() < 3)

return false;

int payloadLength = (rec[1] << 8) + rec[2];

rec = rec.first(payloadLength + 3)

if (buffer.length() < rec.length())

return false;

buffer.set_used(rec.length());

copy(begin(rec), end(rec), begin(buffer));

return true;

}

CppCon 2015 Static Analysis and C++ 27

This is range-checked at runtime. We can also warn
statically that it may fail.

// return number of bytes read\written from socket or < 0 on error

Success(return >= 0) int OS::Socket::Read(
_Out_writes_to_(bufSize, return) byte* buf, size_t bufSize);

_Success_return >= 0) int OS::Socket::Write(_In_reads_(bufSize) byte* buf,
size_t bufSize);

...

int rc = OS::Socket::Read(readBuffer.data(), readBuffer.size());

if (rc <= 0) return -1;

array_buffer<byte> packet = writeBuffer;

if (!MakePacket(readBuffer, packet)) return -1;

rc = OS::Socket::Write(packet.data(), packet.used_length());

if (rc <= 0) return -1;

...
CppCon 2015 Static Analysis and C++ 28

Good and bad of types

• Suddenly, we can find subtle defects that previously eluded us

• Intentions are clearer and we can reduce false positives

• Now we can use the type checker to do some of the work for us!

• SOME DEFECTS ARE NO LONGER POSSIBLE – THEY DON’T COMPILE

• They are not viral – you can preserve legacy code and ABIs

• They are not source code

• They are not are a form of language extension

• You don’t have to interpret them, they are precisely defined

CppCon 2015 Static Analysis and C++ 29

CppCon 2015 Static Analysis and C++ 30

The new “lint” value proposition manifesto:

Find defects during construction: save time and money

Prevent defects from being constructed.

• reduce the cost of locating and fixing them

• reduce their impact on your customers

• increase developer productivity

• add information to programs - improve them

CppCon 2015 Static Analysis and C++ 31

CppCoreGuidelines

• Guidelines effort shares these principles:
• use types for correct-by construction programs

• use types to improve semantic clarity of programs

• Clearer intent more effective static analysis results

• Contribute back lessons from the bug patterns we have seen

CppCon 2015 Static Analysis and C++ 32

Building CppCoreCheck

• Built some analyzers for coding guideline profiles
• bounds

• types

• lifetime (under construction)

• bounds + types: less than 600 lines of C++ against our framework

• Will become available as a CTP around VS 2015 Update 1

CppCon 2015 Static Analysis and C++ 33

Analysis Framework
• C++ framework for writing local (intraprocedural) analyses

• Portable, compiler-agnostic (once we have a parse tree)

• Uses a compiler-independent intermediate representation (types, symbols,
expressions...)

• Supports reporting warnings (and potential fixes), understands suppression
mechanisms, uses a single consistent output format (SARIF)

• Supports different levels of analysis
• Simple, callback based API for getting a CFG that can be walked
• Simple, callback based API for doing a path-sensitive walk of a CFG

CppCon 2015 Static Analysis and C++ 34

Analysis Execution Engine

• For all analyses...
• construction of shared, immutable IR
• warning reporting, suppressions

• For flow-sensitive analyses:
• standard sort and traversal algorithms available for flow analysis over CFG

• For path-sensitive analyses:
• construction of shared, immutable IR
• optimized path-sensitive traversal over CFG
• expression evaluation, value tracking, memory model
• constraint evaluation, path feasibility
• loop widening, annotation (attribute) support and more...

CppCon 2015 Static Analysis and C++ 35

Join us!

• Even if you just run these tools, or someone else’s....
• Give feedback and suggestions

• Help make everyone’s inner loop better
• Contribute new checks, bugfixes, test cases, ideas

• Resources:
• http://microsoft.github.io/CodeAnalysis

• https://github.com/sarif-standard/

• https://msdn.microsoft.com/en-us/library/d3bbz7tz.aspx (Code Analysis in VS)

• http://clang.llvm.org/extra/clang-tidy/

CppCon 2015 Static Analysis and C++ 36

https://github.com/sarif-standard/
https://github.com/sarif-standard/
https://msdn.microsoft.com/en-us/library/d3bbz7tz.aspx
http://clang.llvm.org/extra/clang-tidy/

