Merge pull request #696 from tkruse/style-fixes

Style fixes
This commit is contained in:
Gabriel Dos Reis 2016-09-06 01:14:20 -07:00 committed by GitHub
commit db029855dd

View File

@ -3142,10 +3142,10 @@ Here on one popular implementation I got the output:
I expected that because the call of `g()` reuses the stack space abandoned by the call of `f()` so `*p` refers to the space now occupied by `gx`.
Imagine what would happen if `fx` and `gx` were of different types.
Imagine what would happen if `fx` or `gx` was a type with an invariant.
Imagine what would happen if more that dangling pointer was passed around among a larger set of functions.
Imagine what a cracker could do with that dangling pointer.
* Imagine what would happen if `fx` and `gx` were of different types.
* Imagine what would happen if `fx` or `gx` was a type with an invariant.
* Imagine what would happen if more that dangling pointer was passed around among a larger set of functions.
* Imagine what a cracker could do with that dangling pointer.
Fortunately, most (all?) modern compilers catch and warn against this simple case.
@ -3400,7 +3400,7 @@ There is not a choice when a set of functions are used to do a semantically equi
##### See also
[Default arguments for virtual functions](#Rh-virtual-default-arg}
[Default arguments for virtual functions](#Rh-virtual-default-arg)
##### Enforcement
@ -7368,7 +7368,7 @@ Wrap a `union` in a class together with a type field.
The soon-to-be-standard `variant` type (to be found in `<variant>`) does that for you:
variant<int,double> v;
variant<int, double> v;
v = 123; // v holds an int
int x = get<int>(v);
v = 123.456; // v holds a double
@ -7420,19 +7420,19 @@ Saving programmers from having to write such code is one reason for including `v
int Value::number() const
{
if (type!=Tag::number) throw Bad_entry{};
if (type != Tag::number) throw Bad_entry{};
return i;
}
string Value::text() const
{
if (type!=Tag::text) throw Bad_entry{};
if (type != Tag::text) throw Bad_entry{};
return s;
}
void Value::set_number(int n)
{
if (type==Tag::text) {
if (type == Tag::text) {
s.~string(); // explicitly destroy string
type = Tag::number;
}
@ -7441,7 +7441,7 @@ Saving programmers from having to write such code is one reason for including `v
void Value::set_text(const string& ss)
{
if (type==Tag::text)
if (type == Tag::text)
s = ss;
else {
new(&s) string{ss}; // placement new: explicitly construct string
@ -7451,12 +7451,12 @@ Saving programmers from having to write such code is one reason for including `v
Value& Value::operator=(const Value& e) // necessary because of the string variant
{
if (type==Tag::text && e.type==Tag::text) {
if (type == Tag::text && e.type == Tag::text) {
s = e.s; // usual string assignment
return *this;
}
if (type==Tag::text) s.~string(); // explicit destroy
if (type == Tag::text) s.~string(); // explicit destroy
switch (e.type) {
case Tag::number:
@ -7472,7 +7472,7 @@ Saving programmers from having to write such code is one reason for including `v
Value::~Value()
{
if (type==Tag::text) s.~string(); // explicit destroy
if (type == Tag::text) s.~string(); // explicit destroy
}
##### Enforcement
@ -8460,14 +8460,14 @@ Any type (including primary template or specialization) that overloads unary `*`
##### Example
// use Boost's intrusive_ptr
#include <boost/intrusive_ptr.hpp>
#include<boost/intrusive_ptr.hpp>
void f(boost::intrusive_ptr<widget> p) // error under rule 'sharedptrparam'
{
p->foo();
}
// use Microsoft's CComPtr
#include <atlbase.h>
#include<atlbase.h>
void f(CComPtr<widget> p) // error under rule 'sharedptrparam'
{
p->foo();
@ -9168,7 +9168,7 @@ Reuse of a member name as a local variable can also be a problem:
void S::f(int x)
{
m=7; // assign to member
m = 7; // assign to member
if (x) {
int m = 9;
// ...
@ -9487,7 +9487,9 @@ For containers, there is a tradition for using `{...}` for a list of elements an
Initialization of a variable declared using `auto` with a single value, e.g., `{v}`, had surprising results until recently:
auto x1 {7}; // x1 is an int with the value 7
auto x2 = {7}; // x2 is an initializer_list<int> with an element 7 (this will will change to "element 7" in C++17)
// x2 is an initializer_list<int> with an element 7
// (this will will change to "element 7" in C++17)
auto x2 = {7};
auto x11 {7, 8}; // error: two initializers
auto x22 = {7, 8}; // x2 is an initializer_list<int> with elements 7 and 8
@ -9776,7 +9778,7 @@ Requires messy cast-and-macro-laden code to get working right.
##### Example
#include <cstdarg>
#include<cstdarg>
// "severity" followed by a zero-terminated list of char*s; write the C-style strings to cerr
void error(int severity ...)
@ -10364,7 +10366,7 @@ A key example is basic narrowing:
double d = 7.9;
int i = d; // bad: narrowing: i becomes 7
i = (int)d; // bad: we're going to claim this is still not explicit enough
i = (int) d; // bad: we're going to claim this is still not explicit enough
void f(int x, long y, double d)
{
@ -10511,7 +10513,7 @@ Consider keeping previously computed results around for a costly operation:
class Cache { // some type implementing a cache for an int->int operation
public:
pair<bool,int> find(int x) const; // is there a value for x?
pair<bool, int> find(int x) const; // is there a value for x?
void set(int x, int v); // make y the value for x
// ...
private:
@ -10525,7 +10527,7 @@ Consider keeping previously computed results around for a costly operation:
auto p = cache.find(x);
if (p.first) return p.second;
int val = compute(x);
cache.set(x,val); // insert value for x
cache.set(x, val); // insert value for x
return val;
}
// ...
@ -10543,7 +10545,7 @@ To do this we still need to mutate `cache`, so people sometimes resort to a `con
auto p = cache.find(x);
if (p.first) return p.second;
int val = compute(x);
const_cast<Cache&>(cache).set(x,val); // ugly
const_cast<Cache&>(cache).set(x, val); // ugly
return val;
}
// ...
@ -10561,7 +10563,7 @@ State that `cache` is mutable even for a `const` object:
auto p = cache.find(x);
if (p.first) return p.second;
int val = compute(x);
cache.set(x,val);
cache.set(x, val);
return val;
}
// ...
@ -10939,12 +10941,15 @@ The build-in array uses signed types for subscripts.
This makes surprises (and bugs) inevitable.
int a[10];
for (int i=0; i<10; ++i) a[i]=i;
for (int i=0; i < 10; ++i) a[i]=i;
vector<int> v(10);
for (int i=0; v.size()<10; ++i) v[i]=i; // compares signed to unsigned; some compilers warn
// compares signed to unsigned; some compilers warn
for (int i=0; v.size() < 10; ++i) v[i]=i;
int a2[-2]; // error: negative size
vector<int> v2(-2); // OK, but the number of ints (4294967294) is so large that we should get an exception
// OK, but the number of ints (4294967294) is so large that we should get an exception
vector<int> v2(-2);
##### Enforcement
@ -11190,7 +11195,7 @@ Because a design that ignore the possibility of later improvement is hard to cha
From the C (and C++) standard:
void qsort (void* base, size_t num, size_t size, int (*compar)(const void*,const void*));
void qsort (void* base, size_t num, size_t size, int (*compar)(const void*, const void*));
When did you even want to sort memory?
Really, we sort sequences of elements, typically stored in containers.
@ -11200,7 +11205,10 @@ This implies added work for the programmer, is error prone, and deprives the com
double data[100];
// ... fill a ...
qsort(data,100,sizeof(double),compare_doubles); // 100 chunks of memory of sizeof(double) starting at address data using the order defined by compare_doubles
// 100 chunks of memory of sizeof(double) starting at
// address data using the order defined by compare_doubles
qsort(data, 100, sizeof(double), compare_doubles);
From the point of view of interface design is that `qsort` throws away useful information.
@ -11209,13 +11217,15 @@ We can do better (in C++98)
template<typename Iter>
void sort(Iter b, Iter e); // sort [b:e)
sort(data,data+100);
sort(data, data + 100);
Here, we use the compiler's knowledge about the size of the array, the type of elements, and how to compare `double`s.
With C++11 plus [concepts](#???), we can do better still
void sort(Sortable& c); // Sortable specifies that c must be a random-access sequence of elements comparable with <
// Sortable specifies that c must be a
// random-access sequence of elements comparable with <
void sort(Sortable& c);
sort(c);
@ -11224,7 +11234,8 @@ In this, the `sort` interfaces shown here still have a weakness:
They implicitly rely on the element type having less-than (`<`) defined.
To complete the interface, we need a second version that accepts a comparison criteria:
void sort(Sortable& c, Predicate<Value_type<Sortable>> p); // compare elements of c using p
// compare elements of c using p
void sort(Sortable& c, Predicate<Value_type<Sortable>> p);
The standard-library specification of `sort` offers those two versions,
but the semantics is expressed in English rather than code using concepts.
@ -11267,7 +11278,7 @@ Don't let bad designs "bleed into" your code.
Consider:
template <class ForwardIterator, class T>
bool binary_search (ForwardIterator first, ForwardIterator last, const T& val);
bool binary_search(ForwardIterator first, ForwardIterator last, const T& val);
`binary_search(begin(c),end(c),7)` will tell you whether `7` is in `c` or not.
However, it will not tell you where that `7` is or whether there are more than one `7`.
@ -11283,13 +11294,13 @@ needed information back to the caller. Therefore, the standard library also offe
However, `lower_bound` still doesn't return enough information for all uses, so the standard library also offers
template <class ForwardIterator, class T>
pair<ForwardIterator,ForwardIterator>
equal_range (ForwardIterator first, ForwardIterator last, const T& val);
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first, ForwardIterator last, const T& val);
`equal_range` returns a `pair` of iterators specifying the first and one beyond last match.
auto r = equal_range(begin(c),end(c),7);
for (auto p = r.first(); p!=r.second(), ++p)
auto r = equal_range(begin(c), end(c),7);
for (auto p = r.first(); p != r.second(), ++p)
cout << *p << '\n';
Obviously, these three interfaces are implemented by the same basic code.
@ -12069,7 +12080,7 @@ A `thread` that has not been `detach()`ed when it is destroyed terminates the pr
##### Enforcement
* Flag `join's for `raii_thread`s ???
* Flag `join`s for `raii_thread`s ???
* Flag `detach`s for `detached_thread`s
@ -13957,7 +13968,7 @@ It also avoids brittle or inefficient workarounds. Convention: That's the way th
};
Container c(10, sizeof(double));
((double*)c.elem)[] = 9.9;
((double*) c.elem)[] = 9.9;
This doesn't directly express the intent of the programmer and hides the structure of the program from the type system and optimizer.
@ -15458,7 +15469,7 @@ Variadic templates is the most general mechanism for that, and is both efficient
##### Enforcement
* Flag uses of `va_arg` in user code.
* Flag uses of `va_arg` in user code.
### <a name="Rt-variadic-pass"></a>T.101: ??? How to pass arguments to a variadic template ???
@ -15612,7 +15623,7 @@ Often a `constexpr` function implies less compile-time overhead than alternative
##### Enforcement
* Flag template metaprograms yielding a value. These should be replaced with `constexpr` functions.
* Flag template metaprograms yielding a value. These should be replaced with `constexpr` functions.
### <a name="Rt-std-tmp"></a>T.124: Prefer to use standard-library TMP facilities
@ -15762,7 +15773,7 @@ Use `!=` instead of `<` to compare iterators; `!=` works for more objects becaus
// ...
}
Of course, range-for is better still where it does what you want.
Of course, range-`for` is better still where it does what you want.
##### Example
@ -15891,7 +15902,7 @@ That subset can be compiled with both C and C++ compilers, and when compiled as
int* p1 = malloc(10 * sizeof(int)); // not C++
int* p2 = static_cast<int*>(malloc(10 * sizeof(int))); // not C, C-style C++
int* p3 = new int[10]; // not C
int* p4 = (int*)malloc(10 * sizeof(int)); // both C and C++
int* p4 = (int*) malloc(10 * sizeof(int)); // both C and C++
##### Enforcement
@ -16409,7 +16420,7 @@ This slowdown can be significant compared to `printf`-style output.
##### Example
cout << "Hello, World!" << endl; // two output operations and a flush
cout << "hello, World!\n"; // one output operation and no flush
cout << "Hello, World!\n"; // one output operation and no flush
##### Note
@ -16546,9 +16557,9 @@ In particular, the single-return rule makes it harder to concentrate error check
// requires Number<T>
string sign(T x)
{
if (x<0)
if (x < 0)
return "negative";
else if (x>0)
else if (x > 0)
return "positive";
return "zero";
}
@ -16560,12 +16571,12 @@ to use a single return only we would have to do something like
string sign(T x) // bad
{
string res;
if (x<0)
if (x < 0)
res = "negative";
else if (x>0)
else if (x > 0)
res = "positive";
else
res ="zero";
res = "zero";
return res;
}
@ -16577,7 +16588,7 @@ Of course many simple functions will naturally have just one `return` because of
int index(const char* p)
{
if (p==nullptr) return -1; // error indicator: alternatively `throw nullptr_error{}`
if (p == nullptr) return -1; // error indicator: alternatively "throw nullptr_error{}"
// ... do a lookup to find the index for p
return i;
}
@ -16587,7 +16598,7 @@ If we applied the rule, we'd get something like
int index2(const char* p)
{
int i;
if (p==nullptr)
if (p == nullptr)
i = -1; // error indicator
else {
// ... do a lookup to find the index for p
@ -16715,9 +16726,9 @@ This technique is a pre-exception technique for RAII-like resource and error han
void do_something(int n)
{
if (n<100) goto exit;
if (n < 100) goto exit;
// ...
int* p = (int*)malloc(n);
int* p = (int*) malloc(n);
// ...
if (some_ error) goto_exit;
// ...