a bit of fillout in the template section

This commit is contained in:
Bjarne Stroustrup 2016-02-15 15:38:02 -05:00
parent fd2dc97baf
commit 23b7ceab9c

View File

@ -1,6 +1,6 @@
# <a name="main"></a>C++ Core Guidelines
February 2, 2016
February 15, 2016
Editors:
@ -11918,10 +11918,13 @@ In general, passing function objects gives better performance than passing point
bool greater_than_7(double x) { return x>7; }
auto x = find_if(v, greater_than_7); // pointer to function: inflexible
auto y = find_if(v, [](double x) { return x>7; }); // function object: carries the needed data
auto y = find_if(v, Greater_than<double>(7)); // function object: carries the needed data
auto z = find_if(v, Greater_than<double>(7)); // function object: carries the needed data
??? these lambdas are crying out for auto parameters -- any objection to making the change?
You can, of course, gneralize those functions using `auto` or (when and where available) concepts. For example:
auto y1 = find_if(v, [](Ordered x) { return x>7; }); // reruire an ordered type
auto z1 = find_if(v, [](auto x) { return x>7; }); // hope that the type has a >
##### Note
Lambdas generate function objects.
@ -11949,13 +11952,64 @@ The issue here is whether to require the minimal set of operations for a templat
(e.g., `==` but not `!=` or `+` but not `+=`).
The rule supports the view that a concept should reflect a (mathematically) coherent set of operations.
##### Example, bad
class Minimal {
// ...
};
bool operator==(const Minimal&,const Minimal&);
bool operator<(const Minimal&,const Minimal&);
Minimal operator+(const Minimal&, const Minimal&);
// no other operators
void f(const Minimal& x, const Minimal& y)
{
if (!(x==y) { /* ... */ } // OK
if (x!=y) { /* ... */ } //surprise! error
while (!(x<y)) { /* ... */ } // OK
while (x>=y) { /* ... */ } //surprise! error
x = x+y; // OK
x += y; // surprise! error
}
This is minimal, but surprising and constraining for users.
It could even be less efficient.
##### Example
???
class Convenient {
// ...
};
bool operator==(const Convenient&,const Convenient&);
bool operator<(const Convenient&,const Convenient&);
// ... and the other comparison operators ...
Minimal operator+(const Convenient&, const Convenient&);
// .. and the other arithmetic operators ...
void f(const Convenient& x, const Convenient& y)
{
if (!(x==y) { /* ... */ } // OK
if (x!=y) { /* ... */ } //OK
while (!(x<y)) { /* ... */ } // OK
while (x>=y) { /* ... */ } //OK
x = x+y; // OK
x += y; // OK
}
It can be a nuisance to define all operators, but not hard.
Hopefully, C++17 will give you comparison operators by default.
##### Enforcement
???
* Flag classes the support "odd" subsets of a set of operators, e.g., `==` but not `!=` or `+` but not `-`.
Yes, `std::string` is "odd", but it's too late to change that.
### <a name="Rt-alias"></a>T.42: Use template aliases to simplify notation and hide implementation details
@ -12042,29 +12096,74 @@ Flag uses where an explicitly specialized type exactly matches the types of the
##### Reason
???
Readability.
Preventing surprises and errors.
Most uses support that anyway.
##### Example
???
class X {
// ...
public:
explicit X(int);
X(const X&); // copy
X operator=(const X&);
X(X&&); // move
X& operator=(X&&);
~X();
// ... no moreconstructors ...
};
X x {1}; // fine
X y = x; // fine
std::vector<X> v(10); // error: no default constructor
##### Note
Semiregular requires default constructible.
##### Enforcement
???
* Flag types that are not at least `SemiRegular`.
### <a name="Rt-visible"></a>T.47: Avoid highly visible unconstrained templates with common names
##### Reason
???
An unconstrained template argument is a perfect match for anything so such a template can be preferred over more specific types that require minor conversions.
This is particularly annoying/dangerous when ADL is used.
Common names make this problem more likely.
##### Example
???
namespace Bad {
struct S { int m; };
template<typename T1, typename T2>
bool operator==(T1, T2) { cout << "Bad\n"; return true; }
}
namespace T0 {
bool operator==(int, Bad::S) { cout << "T0\n"; return true; } // compate to int
void test()
{
Bad::S bad{ 1 };
vector<int> v(10);
bool b = 1==bad;
bool b2 = v.size()==bad;
}
}
This prints `T0` and `Bad`.
Now the `==` in `Bad` was designed to cause trouble, but would you have spotted the problem in real code?
The problem is that `v.size()` returns an `unsigned` integer so that a conversion is needed to call the local `==`;
the `==` in `Bad` requires no conversions.
Realistic types, such as the standard library iterators can be made to exhibit similar anti-social tendencies.
##### Enforcement
???
????
### <a name="Rt-concept-def"></a>T.48: If your compiler does not support concepts, fake them with `enable_if`
@ -12295,6 +12394,35 @@ When `concept`s become available such alternatives can be distinguished directly
???
### <a name="Rt-specialization2"></a>T.67: Use specialization to provide alternative implementations for irregular types
##### Reason
???
##### Example
???
##### Enforcement
???
### <a name="Rt-cast"></a>T.68: Use `{}` rather than `()` within templates to avoid ambiguities
##### Reason
???
##### Example
???
##### Enforcement
???
### <a name="Rt-customization"></a>T.69: Inside a template, don't make an unqualified nonmember function call unless you intend it to be a customization point
##### Reason