CS-Notes/docs/notes/剑指 Offer 题解 - 60~68.md
2019-06-27 11:18:02 +08:00

12 KiB
Raw Blame History

60. n 个骰子的点数

Lintcode

题目描述

把 n 个骰子仍在地上,求点数和为 s 的概率。


解题思路

动态规划

使用一个二维数组 dp 存储点数出现的次数,其中 dp[i][j] 表示前 i 个骰子产生点数 j 的次数。

空间复杂度O(N2)

public List<Map.Entry<Integer, Double>> dicesSum(int n) {
    final int face = 6;
    final int pointNum = face * n;
    long[][] dp = new long[n + 1][pointNum + 1];

    for (int i = 1; i <= face; i++)
        dp[1][i] = 1;

    for (int i = 2; i <= n; i++)
        for (int j = i; j <= pointNum; j++)     /* 使用 i 个骰子最小点数为 i */
            for (int k = 1; k <= face && k <= j; k++)
                dp[i][j] += dp[i - 1][j - k];

    final double totalNum = Math.pow(6, n);
    List<Map.Entry<Integer, Double>> ret = new ArrayList<>();
    for (int i = n; i <= pointNum; i++)
        ret.add(new AbstractMap.SimpleEntry<>(i, dp[n][i] / totalNum));

    return ret;
}

动态规划 + 旋转数组

空间复杂度O(N)

public List<Map.Entry<Integer, Double>> dicesSum(int n) {
    final int face = 6;
    final int pointNum = face * n;
    long[][] dp = new long[2][pointNum + 1];

    for (int i = 1; i <= face; i++)
        dp[0][i] = 1;

    int flag = 1;                                     /* 旋转标记 */
    for (int i = 2; i <= n; i++, flag = 1 - flag) {
        for (int j = 0; j <= pointNum; j++)
            dp[flag][j] = 0;                          /* 旋转数组清零 */

        for (int j = i; j <= pointNum; j++)
            for (int k = 1; k <= face && k <= j; k++)
                dp[flag][j] += dp[1 - flag][j - k];
    }

    final double totalNum = Math.pow(6, n);
    List<Map.Entry<Integer, Double>> ret = new ArrayList<>();
    for (int i = n; i <= pointNum; i++)
        ret.add(new AbstractMap.SimpleEntry<>(i, dp[1 - flag][i] / totalNum));

    return ret;
}

61. 扑克牌顺子

NowCoder

题目描述

五张牌,其中大小鬼为癞子,牌面为 0。判断这五张牌是否能组成顺子。


解题思路

public boolean isContinuous(int[] nums) {

    if (nums.length < 5)
        return false;

    Arrays.sort(nums);

    // 统计癞子数量
    int cnt = 0;
    for (int num : nums)
        if (num == 0)
            cnt++;

    // 使用癞子去补全不连续的顺子
    for (int i = cnt; i < nums.length - 1; i++) {
        if (nums[i + 1] == nums[i])
            return false;
        cnt -= nums[i + 1] - nums[i] - 1;
    }

    return cnt >= 0;
}

62. 圆圈中最后剩下的数

NowCoder

题目描述

让小朋友们围成一个大圈。然后,随机指定一个数 m让编号为 0 的小朋友开始报数。每次喊到 m-1 的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续 0...m-1 报数 .... 这样下去 .... 直到剩下最后一个小朋友,可以不用表演。

解题思路

约瑟夫环,圆圈长度为 n 的解可以看成长度为 n-1 的解再加上报数的长度 m。因为是圆圈所以最后需要对 n 取余。

public int LastRemaining_Solution(int n, int m) {
    if (n == 0)     /* 特殊输入的处理 */
        return -1;
    if (n == 1)     /* 递归返回条件 */
        return 0;
    return (LastRemaining_Solution(n - 1, m) + m) % n;
}

63. 股票的最大利润

Leetcode

题目描述

可以有一次买入和一次卖出,买入必须在前。求最大收益。


解题思路

使用贪心策略,假设第 i 轮进行卖出操作,买入操作价格应该在 i 之前并且价格最低。

public int maxProfit(int[] prices) {
    if (prices == null || prices.length == 0)
        return 0;
    int soFarMin = prices[0];
    int maxProfit = 0;
    for (int i = 1; i < prices.length; i++) {
        soFarMin = Math.min(soFarMin, prices[i]);
        maxProfit = Math.max(maxProfit, prices[i] - soFarMin);
    }
    return maxProfit;
}

64. 求 1+2+3+...+n

NowCoder

题目描述

要求不能使用乘除法、for、while、if、else、switch、case 等关键字及条件判断语句 A ? B : C。

解题思路

使用递归解法最重要的是指定返回条件,但是本题无法直接使用 if 语句来指定返回条件。

条件与 && 具有短路原则,即在第一个条件语句为 false 的情况下不会去执行第二个条件语句。利用这一特性,将递归的返回条件取非然后作为 && 的第一个条件语句,递归的主体转换为第二个条件语句,那么当递归的返回条件为 true 的情况下就不会执行递归的主体部分,递归返回。

本题的递归返回条件为 n <= 0取非后就是 n > 0递归的主体部分为 sum += Sum_Solution(n - 1),转换为条件语句后就是 (sum += Sum_Solution(n - 1)) > 0。

public int Sum_Solution(int n) {
    int sum = n;
    boolean b = (n > 0) && ((sum += Sum_Solution(n - 1)) > 0);
    return sum;
}

65. 不用加减乘除做加法

NowCoder

题目描述

写一个函数,求两个整数之和,要求不得使用 +、-、*、/ 四则运算符号。

解题思路

a ^ b 表示没有考虑进位的情况下两数的和,(a & b) << 1 就是进位。

递归会终止的原因是 (a & b) << 1 最右边会多一个 0那么继续递归进位最右边的 0 会慢慢增多,最后进位会变为 0递归终止。

public int Add(int a, int b) {
    return b == 0 ? a : Add(a ^ b, (a & b) << 1);
}

66. 构建乘积数组

NowCoder

题目描述

给定一个数组 A[0, 1,..., n-1],请构建一个数组 B[0, 1,..., n-1],其中 B 中的元素 B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*...*A[n-1]。要求不能使用除法。


解题思路

public int[] multiply(int[] A) {
    int n = A.length;
    int[] B = new int[n];
    for (int i = 0, product = 1; i < n; product *= A[i], i++)       /* 从左往右累乘 */
        B[i] = product;
    for (int i = n - 1, product = 1; i >= 0; product *= A[i], i--)  /* 从右往左累乘 */
        B[i] *= product;
    return B;
}

67. 把字符串转换成整数

NowCoder

题目描述

将一个字符串转换成一个整数,字符串不是一个合法的数值则返回 0要求不能使用字符串转换整数的库函数。

Iuput:
+2147483647
1a33

Output:
2147483647
0

解题思路

public int StrToInt(String str) {
    if (str == null || str.length() == 0)
        return 0;
    boolean isNegative = str.charAt(0) == '-';
    int ret = 0;
    for (int i = 0; i < str.length(); i++) {
        char c = str.charAt(i);
        if (i == 0 && (c == '+' || c == '-'))  /* 符号判定 */
            continue;
        if (c < '0' || c > '9')                /* 非法输入 */
            return 0;
        ret = ret * 10 + (c - '0');
    }
    return isNegative ? -ret : ret;
}

68. 树中两个节点的最低公共祖先

解题思路

二叉查找树

Leetcode : 235. Lowest Common Ancestor of a Binary Search Tree

二叉查找树中,两个节点 p, q 的公共祖先 root 满足 root.val >= p.val && root.val <= q.val。


public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
    if (root == null)
        return root;
    if (root.val > p.val && root.val > q.val)
        return lowestCommonAncestor(root.left, p, q);
    if (root.val < p.val && root.val < q.val)
        return lowestCommonAncestor(root.right, p, q);
    return root;
}

普通二叉树

Leetcode : 236. Lowest Common Ancestor of a Binary Tree

在左右子树中查找是否存在 p 或者 q如果 p 和 q 分别在两个子树中,那么就说明根节点就是最低公共祖先。


public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
    if (root == null || root == p || root == q)
        return root;
    TreeNode left = lowestCommonAncestor(root.left, p, q);
    TreeNode right = lowestCommonAncestor(root.right, p, q);
    return left == null ? right : right == null ? left : root;
}

微信公众号

更多精彩内容将发布在微信公众号 CyC2018 上,你也可以在公众号后台和我交流学习和求职相关的问题。另外,公众号提供了该项目的 PDF 等离线阅读版本,后台回复 "下载" 即可领取。公众号也提供了一份技术面试复习大纲,不仅系统整理了面试知识点,而且标注了各个知识点的重要程度,从而帮你理清多而杂的面试知识点,后台回复 "大纲" 即可领取。我基本是按照这个大纲来进行复习的,对我拿到了 BAT 头条等 Offer 起到很大的帮助。你们完全可以和我一样根据大纲上列的知识点来进行复习,就不用看很多不重要的内容,也可以知道哪些内容很重要从而多安排一些复习时间。