# 60. n 个骰子的点数 ## 题目链接 [Lintcode](https://www.lintcode.com/en/problem/dices-sum/) ## 题目描述 把 n 个骰子扔在地上,求点数和为 s 的概率。

## 解题思路 ### 动态规划 使用一个二维数组 dp 存储点数出现的次数,其中 dp\[i]\[j] 表示前 i 个骰子产生点数 j 的次数。 空间复杂度:O(N2) ```java public List> dicesSum(int n) { final int face = 6; final int pointNum = face * n; long[][] dp = new long[n + 1][pointNum + 1]; for (int i = 1; i <= face; i++) dp[1][i] = 1; for (int i = 2; i <= n; i++) for (int j = i; j <= pointNum; j++) /* 使用 i 个骰子最小点数为 i */ for (int k = 1; k <= face && k <= j; k++) dp[i][j] += dp[i - 1][j - k]; final double totalNum = Math.pow(6, n); List> ret = new ArrayList<>(); for (int i = n; i <= pointNum; i++) ret.add(new AbstractMap.SimpleEntry<>(i, dp[n][i] / totalNum)); return ret; } ``` ### 动态规划 + 旋转数组 空间复杂度:O(N) ```java public List> dicesSum(int n) { final int face = 6; final int pointNum = face * n; long[][] dp = new long[2][pointNum + 1]; for (int i = 1; i <= face; i++) dp[0][i] = 1; int flag = 1; /* 旋转标记 */ for (int i = 2; i <= n; i++, flag = 1 - flag) { for (int j = 0; j <= pointNum; j++) dp[flag][j] = 0; /* 旋转数组清零 */ for (int j = i; j <= pointNum; j++) for (int k = 1; k <= face && k <= j; k++) dp[flag][j] += dp[1 - flag][j - k]; } final double totalNum = Math.pow(6, n); List> ret = new ArrayList<>(); for (int i = n; i <= pointNum; i++) ret.add(new AbstractMap.SimpleEntry<>(i, dp[1 - flag][i] / totalNum)); return ret; } ```