Note that this package supports syntax highlighting for both Verilog and System Verilog.
/* Multiline comments in Verilog
look like C comments and // is OK in here. */
// Single-line comment in Verilog.
// example code from: http://iroi.seu.edu.cn/books/asics/Book2/CH11/CH11.02.htm
module declarations;
parameter H12_UNSIZED = 'h 12;
parameter H12_SIZED = 6'h 12;
parameter D42 = 8'B0010_1010;
parameter D123 = 123;
parameter D63 = 8'o 77;
parameter A = 'h x, B = 'o x, C = 8'b x, D = 'h z, E = 16'h ????;
reg [3:0] B0011,Bxxx1,Bzzz1;
real R1,R2,R3;
integer I1,I3,I_3;
parameter BXZ = 8'b1x0x1z0z;
initial begin
B0011 = 4'b11; Bxxx1 = 4'bx1; Bzzz1 = 4'bz1;
R1 = 0.1e1; R2 = 2.0; R3 = 30E-01;
I1 = 1.1; I3 = 2.5; I_3 = -2.5;
end
initial begin #1;
$display("H12_UNSIZED, H12_SIZED (hex) = %h, %h",H12_UNSIZED, H12_SIZED);
$display("D42 (bin) = %b",D42," (dec) = %d",D42);
$display("D123 (hex) = %h",D123," (dec) = %d",D123);
$display("D63 (oct) = %o",D63);
$display("A (hex) = %h",A," B (hex) = %h",B);
$display("C (hex) = %h",C," D (hex) = %h",D," E (hex) = %h",E);
$display("BXZ (bin) = %b",BXZ," (hex) = %h",BXZ);
$display("B0011, Bxxx1, Bzzz1 (bin) = %b, %b, %b",B0011,Bxxx1,Bzzz1);
$display("R1, R2, R3 (e, f, g) = %e, %f, %g", R1, R2, R3);
$display("I1, I3, I_3 (d) = %d, %d, %d", I1, I3, I_3);
end
endmodule
`include "internal_defines.vh"
//*****************************************************************************
// memory_decoder: a custom module used to handle memory transactions
//*****************************************************************************
//
// out_mem (output) - The output to memory
// out_reg (output) - The output to the register file
// mem_we (output) - Which byte in the word to write too
// mem_in (input) - The input from memory
// addr_in (input) - The lowest 2 bits of byte offset to store in memory
// data_in (input) - The input from the register file to be stored
// l_bit (input) - The load bit signal (control)
// b_bit (input) - The byte bit signal (control)
//
module memory_decoder(out_mem, out_reg, mem_in, data_in, l_bit, b_bit, addr_in,
mem_we);
output reg [31:0] out_mem, out_reg;
output reg [3:0] mem_we;
input [31:0] mem_in, data_in;
input [1:0] addr_in;
input l_bit, b_bit;
always_comb begin
mem_we = 4'b0000; // dont write memory by default
if (l_bit == 1) begin // ldr and ldrb
out_mem = mem_in; // dont change memory!
if (b_bit == 1) begin
/* figure out which byte to load from memory */
case (addr_in)
2'b00: out_reg = {24'b00, mem_in[7:0]};
2'b01: out_reg = {24'b00, mem_in[15:8]};
2'b10: out_reg = {24'b00, mem_in[23:16]};
2'b11: out_reg = {24'b00, mem_in[31:24]};
endcase
end
else begin
out_reg = mem_in;
end
end
else begin // str and strb
out_reg = `UNKNOWN; // We are not reading from mem
if (b_bit == 1) begin
/* figure out which byte to write to in memory */
out_mem = {4{data_in[7:0]}};
case (addr_in)
2'b00: mem_we = 4'b1000;
2'b01: mem_we = 4'b0100;
2'b10: mem_we = 4'b0010;
2'b11: mem_we = 4'b0001;
endcase
end
else begin
mem_we = 4'b1111; // write to all channels
out_mem = data_in;
end
end
end
endmodule