* [一、事务](#一事务) * [概念](#概念) * [四大特性](#四大特性) * [二、并发一致性问题](#二并发一致性问题) * [问题](#问题) * [解决方法](#解决方法) * [三、封锁](#三封锁) * [封锁类型](#封锁类型) * [封锁粒度](#封锁粒度) * [封锁协议](#封锁协议) * [四、隔离级别](#四隔离级别) * [五、数据库系统概述](#五数据库系统概述) * [基本术语](#基本术语) * [数据库的三层模式和两层映像](#数据库的三层模式和两层映像) * [六、关系数据库建模](#六关系数据库建模) * [ER 图](#er-图) * [约束](#约束) * [七、关系数据库设计理论](#七关系数据库设计理论) * [函数依赖](#函数依赖) * [异常](#异常) * [范式](#范式) * [参考资料](#参考资料) # 一、事务 ## 概念

事务指的是满足 ACID 特性的一系列操作。 在数据库中,可以通过 Commit 提交一个事务,也可以使用 Rollback 进行回退。 ## 四大特性

**1. 原子性(Atomicity)**
事务被视为不可分割的最小单元,要么全部提交成功,要么全部失败回滚。 **2. 一致性(Consistency)**
事务执行前后都保持一致性状态。在一致性状态下,所有事务对一个数据的读取结果都是相同的。 **3. 隔离性(Isolation)**
一个事务所做的修改在最终提交以前,对其它事务是不可见的。也可以理解为多个事务单独执行,互不影响。 **4. 持久性(Durability)**
一旦事务提交,则其所做的修改将会永远保存到数据库中。即使系统发生崩溃,事务执行的结果也不能丢失。可以通过数据库备份和恢复来保证持久性。 # 二、并发一致性问题 在并发环境下,一个事务如果受到另一个事务的影响,那么事务操作就无法满足一致性条件。 ## 问题 **1. 丢失修改**
T1 和 T2 两个事务同时对一个数据进行修改,T1 先修改,T2 随后修改,T2 的修改覆盖了 T1 的修改。 **2. 读脏数据**
T1 修改一个数据,T2 随后读取这个数据。如果 T1 撤销了这次修改,那么 T2 读取的数据是脏数据。

**3. 不可重复读**
T2 读取一个数据,T1 对该数据做了修改。如果 T2 再次读取这个数据,此时读取的结果和和第一次读取的结果不同。

**4. 幻影读**
T1 读取某个范围的数据,T2 在这个范围内插入新的数据,T1 再次读取这个范围的数据,此时读取的结果和和第一次读取的结果不同。

## 解决方法 产生并发不一致性问题主要原因是破坏了事务的隔离性,解决方法是通过并发控制来保证隔离性。 在没有并发的情况下,事务以串行的方式执行,互不干扰,因此可以保证隔离性。在并发的情况下,如果能通过并发控制,让事务的执行结果和某一个串行执行的结果相同,就认为事务的执行结果满足隔离性要求,也就是说是正确的。把这种事务执行方式成为 **可串行化调度** 。 并发控制可以通过封锁来实现,但是封锁操作都要用户自己控制,相当复杂。数据库管理系统提供了事务的隔离级别,让用户以一种更轻松的方式处理并发一致性问题。 # 三、封锁 ## 封锁类型 - 排它锁(Exclusive),简写为 X 锁,又称写锁。 - 共享锁(Shared),简写为 S 锁,又称读锁。 - 一个事务对数据对象 A 加了 X 锁,就可以对 A 进行读取和更新。加锁期间其它事务不能对 A 加任何锁; - 一个事务对数据对象 A 加了 S 锁,可以对 A 进行读取操作,但是不能进行更新操作。加锁期间其它事务能对 A 加 S 锁,但是不能加 X 锁。 以上加锁规定总结如下:

## 封锁粒度

应该尽量只锁定需要修改的那部分数据,而不是所有的资源。锁定的数据量越少,发生锁争用的可能就越小,系统的并发程度就越高。 但是加锁需要消耗资源,锁的各种操作,包括获取锁,检查锁是否已经解除、释放锁,都会增加系统开销。因此封锁粒度越小,系统开销就越大。需要在锁开销以及数据安全性之间做一个权衡。 MySQL 中提供了两种封锁粒度:行级锁以及表级锁。 ## 封锁协议 ### 1. 三级封锁协议 **1.1 一级封锁协议**
事务 T 要修改数据 A 时必须加 X 锁,直到事务结束才释放锁。 可以解决丢失修改问题; **1.2 二级封锁协议**
在一级的基础上,要求读取数据 A 时必须加 S 锁,读取完马上释放 S 锁。 可以解决读脏数据问题,因为如果一个事务在对数据 A 进行修改,根据 1 级封锁协议,会加 X 锁,那么就不能再加 S 锁了,也就是不会读入数据。 **1.3 三级封锁协议**
在二级的基础上,要求读取数据 A 时必须加 S 锁,直到事务结束了才能释放 S 锁。 可以解决不可重复读的问题,因为读 A 时,其它事务不能对 A 加 X 锁,从而避免了在读的期间数据发生改变。

### 2. 两段锁协议 加锁和解锁分为两个阶段进行,事务 T 对数据 A 进行或者写操作之前,必须先获得对 A 的封锁,并且在释放一个封锁之前,T 不能再获得任何的其它锁。 事务遵循两段锁协议是保证并发操作可串行化调度的充分条件。例如以下操作满足两段锁协议,它是可串行化调度。 ```html lock-x(A)...lock-s(B)...lock-s(c)...unlock(A)...unlock(C)...unlock(B) ``` 但不是必要条件,例如以下操作不满足两段锁协议,但是它还是可串行化调度。 ```html lock-x(A)...unlock(A)...lock-s(B)...unlock(B)...lock-s(c)...unlock(C)... ``` # 四、隔离级别 **1. 未提交读(READ UNCOMMITTED)**
事务中的修改,即使没有提交,对其它事务也是可见的。事务可以读取未提交的数据,这也被称为脏读。 **2. 提交读(READ COMMITTED)**
一个事务只能读取已经提交的事务所做的修改。换句话说,一个事务所在的修改在提交之前对其它事务是不可见的。 **3. 可重复读(REPEATABLE READ)**
解决了脏读的问题,保证在同一个事务中多次读取同样的记录结果是一致的。 **4. 可串行化(SERIALIXABLE)**
强制事务串行执行。 **5. 总结**
| 隔离级别 | 脏读 | 不可重复读 | 幻影读 | | :---: | :---: | :---:| :---: | | 未提交读 | YES | YES | YES | | 提交读 | NO | YES | YES | | 可重复读 | NO | NO | YES | | 可串行化 | NO | NO | NO | # 五、数据库系统概述 ## 基本术语 ### 1. 数据模型 由数据结构、数据操作和完整性三个要素组成。 ### 2. 数据库系统 数据库系统包含所有与数据库相关的内容,包括数据库、数据库管理系统、应用程序以及数据库管理员和用户,还包括相关的硬件和软件。 ## 数据库的三层模式和两层映像 - 外模式:局部逻辑结构 - 模式:全局逻辑结构 - 内模式:物理结构

### 1. 外模式 又称用户模式,是用户和数据库系统的接口,特定的用户只能访问数据库系统提供给他的外模式中的数据。例如不同的用户创建了不同数据库,那么一个用户只能访问他有权限访问的数据库。 一个数据库可以有多个外模式,一个用户只能有一个外模式,但是一个外模式可以给多个用户使用。 ### 2. 模式 可以分为概念模式和逻辑模式,概念模式可以用概念-关系来描述;逻辑模式使用特定的数据模式(比如关系模型)来描述数据的逻辑结构,这种逻辑结构包括数据的组成、数据项的名称、类型、取值范围。不仅如此,逻辑模式还要描述数据之间的关系、数据的完整性与安全性要求。 ### 3. 内模式 又称为存储模式,描述记录的存储方式,例如索引的组织方式、数据是否压缩以及是否加密等等。 ### 4. 外模式/模式映像 把外模式的局部逻辑结构和模式的全局逻辑结构联系起来。该映像可以保证数据和应用程序的逻辑独立性。 ### 5. 模式/内模式映像 把模式的全局逻辑结构和内模式的物理结构联系起来,该映像可以保证数据和应用程序的物理独立性。 # 六、关系数据库建模 ## ER 图 Entity-Relationship,有三个组成部分:实体、属性、联系。 ### 1. 实体的三种联系 联系包含一对一,一对多,多对多三种。 如果 A 到 B 是一对多关系,那么画个带箭头的线段指向 B;如果是一对一,画两个带箭头的线段;如果是多对多,画两个不带箭头的线段。下图的 Course 和 Student 是一对多的关系。

### 2. 表示出现多次的关系 一个实体在联系出现几次,就要用几条线连接。下图表示一个课程的先修关系,先修关系出现两个 Course 实体,第一个是先修课程,后一个是后修课程,因此需要用两条线来表示这种关系。

### 3. 联系的多向性 虽然老师可以开设多门课,并且可以教授多名学生,但是对于特定的学生和课程,只有一个老师教授,这就构成了一个三元联系。

一般只使用二元联系,可以把多元关系转换为二元关系。

### 4. 表示子类 用一个三角形和两条线来连接类和子类,与子类有关的属性和联系都连到子类上,而与父类和子类都有关的连到父类上。

## 约束 ### 1. 键码 用于唯一表示一个实体。 键码可以由多个属性构成,每个构成键码的属性称为码。 ### 2. 单值约束 某个属性的值是唯一的。 ### 3. 引用完整性约束 一个实体的属性引用的值在另一个实体的某个属性中存在。 ### 4. 域约束 某个属性的值在特定范围之内。 ### 5. 一般约束 比如大小约束,数量约束。 # 七、关系数据库设计理论 ## 函数依赖 记 A->B 表示 A 函数决定 B,也可以说 B 函数依赖于 A。 如果 {A1,A2,... ,An} 是关系的一个或多个属性的集合,该集合决定了关系的其它所有属性并且是最小的,那么该集合就称为键码。 对于 W->A,如果能找到 W 的真子集 W',使得 W'-> A,那么 W->A 就是部分函数依赖,否则就是完全函数依赖; ## 异常 以下的学生课程关系的函数依赖为 Sno, Cname -> Sname, Sdept, Mname, Grade,键码为 {Sno, Cname}。也就是说,确定学生和课程之后,就能确定其它信息。 | Sno | Sname | Sdept | Mname | Cname | Grade | | :---: | :---: | :---: | :---: | :---: |:---:| | 1 | 学生-1 | 学院-1 | 院长-1 | 课程-1 | 90 | | 2 | 学生-2 | 学院-2 | 院长-2 | 课程-2 | 80 | | 2 | 学生-2 | 学院-2 | 院长-2 | 课程-1 | 100 | 不符合范式的关系,会产生很多异常,主要有以下四种异常: 1. 冗余数据。 2. 修改异常,修改了一个记录中的信息,但是另一个记录中相同的信息却没有被修改。 3. 删除异常,删除一个信息,那么也会丢失其它信息。例如如果删除了课程-1,因为学生和课程共同组成了键码,那么学生-1 数据也就不能存在,因此也需要删除。 4. 插入异常,比如新插入一个学生的信息,而这个学生还没选课,那么就无法插入该学生。 ## 范式 范式理论是为了解决以上提到四种异常。高级别范式的依赖于低级别的范式。

### 1. 第一范式 (1NF) 属性不可分; ### 2. 第二范式 (2NF) 每个非主属性完全函数依赖于键码。 可以通过分解来满足。 **分解前**
| Sno | Sname | Sdept | Mname | Cname | Grade | | :---: | :---: | :---: | :---: | :---: |:---:| | 1 | 学生-1 | 学院-1 | 院长-1 | 课程-1 | 90 | | 2 | 学生-2 | 学院-2 | 院长-2 | 课程-2 | 80 | | 2 | 学生-2 | 学院-2 | 院长-2 | 课程-1 | 100 | 以上学生课程关系中,{Sno, Cname} 为键码,有如下函数依赖: - Sno, Cname -> Sname, Sdept, Mname - Son -> Sname, Sdept - Sdept -> Mname - Sno -> Manme - Sno, Cname-> Grade Grade 完全函数依赖于键码,它没有任何冗余数据,每个学生的每门课都有特定的成绩。 Sname, Sdept 和 Manme 都函数依赖于 Sno,而部分依赖于键码。当一个学生选修了多门课时,这些数据就会出现多次,造成大量冗余数据。 **分解后**
关系-1 | Sno | Sname | Sdept | Mname | | :---: | :---: | :---: | :---: | | 1 | 学生-1 | 学院-1 | 院长-1 | | 2 | 学生-2 | 学院-2 | 院长-2 | 有以下函数依赖: - Sno -> Sname, Sdept, Mname - Sdept -> Mname 关系-2 | Sno | Cname | Grade | | :---: | :---: |:---:| | 1 | 课程-1 | 90 | | 2 | 课程-2 | 80 | | 2 | 课程-1 | 100 | 有以下函数依赖: - Sno, Cname -> Grade ### 3. 第三范式 (3NF) 非主属性不传递依赖于键码。 上面的关系-1 中存在以下传递依赖:Sno -> Sdept -> Mname,可以进行以下分解: 关系-11 | Sno | Sname | Sdept | | :---: | :---: | :---: | | 1 | 学生-1 | 学院-1 | | 2 | 学生-2 | 学院-2 | 关系-12 | Sdept | Mname | | :---: | :---: | | 学院-1 | 院长-1 | | 学院-2 | 院长-2 | ### 4. BC 范式(BCNF) 所有属性不传递依赖于键码。 关系 STC(Sname, Tname, Cname, Grade) 的四个属性分别为学生姓名、教师姓名、课程名和成绩,它的键码为 (Sname, Cname, Tname),有以下函数依赖: - Sname, Cname -> Tname - Sname, Cname -> Grade - Sname, Tname -> Cname - Sname, Tname -> Grade - Tname -> Cname 存在着以下函数传递依赖: - Sname -> Tname -> Cname 可以分解成 SC(Sname, Cname, Grade) 和 ST(Sname, Tname),对于 ST,属性之间是多对多关系,无函数依赖。 # 参考资料 - 史嘉权. 数据库系统概论[M]. 清华大学出版社有限公司, 2006. - 施瓦茨. 高性能MYSQL(第3版)[M]. 电子工业出版社, 2013. - [Transaction isolation levels](https://www.slideshare.net/ErnestoHernandezRodriguez/transaction-isolation-levels) - [Concurrency Control](http://scanftree.com/dbms/2-phase-locking-protocol) - [The Nightmare of Locking, Blocking and Isolation Levels!](https://www.slideshare.net/brshristov/the-nightmare-of-locking-blocking-and-isolation-levels-46391666) - [三级模式与两级映像](http://blog.csdn.net/d2457638978/article/details/48783923) - [Database Normalization and Normal Forms with an Example](https://aksakalli.github.io/2012/03/12/database-normalization-and-normal-forms-with-an-example.html)