diff --git a/docs/notes/Leetcode 题解 - 排序.md b/docs/notes/Leetcode 题解 - 排序.md index 8129b06d..204a4199 100644 --- a/docs/notes/Leetcode 题解 - 排序.md +++ b/docs/notes/Leetcode 题解 - 排序.md @@ -18,9 +18,9 @@ # 堆 -用于求解 **TopK Elements** 问题,也就是 K 个最小元素的问题。可以维护一个大小为 K 的最小堆,最小堆中的元素就是最小元素。最小堆需要使用大顶堆来实现,大顶堆表示堆顶元素是堆中最大元素。这是因为我们要得到 k 个最小的元素,因此当遍历到一个新的元素时,需要知道这个新元素是否比堆中最大的元素更小,更小的话就把堆中最大元素去除,并将新元素添加到堆中。所以我们需要很容易得到最大元素并移除最大元素,大顶堆就能很好满足这个要求。 +用于求解 **TopK Elements** 问题,也就是 K 个最小元素的问题。使用最小堆来实现 TopK 问题,最小堆使用大顶堆来实现,大顶堆的堆顶元素为当前堆的最大元素。实现过程:不断地往大顶堆中插入新元素,当堆中元素的数量大于 k 时,移除堆顶元素,也就是当前堆中最大的元素,剩下的元素都为当前添加过的元素中最小的 K 个元素。插入和移除堆顶元素的时间复杂度都为 log2N。 -堆也可以用于求解 Kth Element 问题,得到了大小为 k 的最小堆之后,因为使用了大顶堆来实现,因此堆顶元素就是第 k 大的元素。 +堆也可以用于求解 Kth Element 问题,得到了大小为 K 的最小堆之后,因为使用了大顶堆来实现,因此堆顶元素就是第 K 大的元素。 快速选择也可以求解 TopK Elements 问题,因为找到 Kth Element 之后,再遍历一次数组,所有小于等于 Kth Element 的元素都是 TopK Elements。 diff --git a/notes/Leetcode 题解 - 排序.md b/notes/Leetcode 题解 - 排序.md index 8129b06d..204a4199 100644 --- a/notes/Leetcode 题解 - 排序.md +++ b/notes/Leetcode 题解 - 排序.md @@ -18,9 +18,9 @@ # 堆 -用于求解 **TopK Elements** 问题,也就是 K 个最小元素的问题。可以维护一个大小为 K 的最小堆,最小堆中的元素就是最小元素。最小堆需要使用大顶堆来实现,大顶堆表示堆顶元素是堆中最大元素。这是因为我们要得到 k 个最小的元素,因此当遍历到一个新的元素时,需要知道这个新元素是否比堆中最大的元素更小,更小的话就把堆中最大元素去除,并将新元素添加到堆中。所以我们需要很容易得到最大元素并移除最大元素,大顶堆就能很好满足这个要求。 +用于求解 **TopK Elements** 问题,也就是 K 个最小元素的问题。使用最小堆来实现 TopK 问题,最小堆使用大顶堆来实现,大顶堆的堆顶元素为当前堆的最大元素。实现过程:不断地往大顶堆中插入新元素,当堆中元素的数量大于 k 时,移除堆顶元素,也就是当前堆中最大的元素,剩下的元素都为当前添加过的元素中最小的 K 个元素。插入和移除堆顶元素的时间复杂度都为 log2N。 -堆也可以用于求解 Kth Element 问题,得到了大小为 k 的最小堆之后,因为使用了大顶堆来实现,因此堆顶元素就是第 k 大的元素。 +堆也可以用于求解 Kth Element 问题,得到了大小为 K 的最小堆之后,因为使用了大顶堆来实现,因此堆顶元素就是第 K 大的元素。 快速选择也可以求解 TopK Elements 问题,因为找到 Kth Element 之后,再遍历一次数组,所有小于等于 Kth Element 的元素都是 TopK Elements。