auto commit

This commit is contained in:
CyC2018 2018-06-10 10:17:44 +08:00
parent c3ee062a20
commit e04b54ee47

View File

@ -1,6 +1,5 @@
<!-- GFM-TOC -->
* [算法思想](#算法思想)
* [二分查找](#二分查找)
* [贪心思想](#贪心思想)
* [双指针](#双指针)
* [排序](#排序)
@ -12,6 +11,7 @@
* [BFS](#bfs)
* [DFS](#dfs)
* [Backtracking](#backtracking)
* [二分查找](#二分查找)
* [分治](#分治)
* [动态规划](#动态规划)
* [斐波那契数列](#斐波那契数列)
@ -55,272 +55,6 @@
# 算法思想
## 二分查找
**正常实现**
```java
public int binarySearch(int[] nums, int key) {
int l = 0, h = nums.length - 1;
while (l <= h) {
int m = l + (h - l) / 2;
if (nums[m] == key)
return m;
else if (nums[m] > key)
h = m - 1;
else
l = m + 1;
}
return -1;
}
```
**时间复杂度**
O(logN)
**计算 mid**
有两种计算 mid 的方式:
- mid = (l + h) / 2
- mid = l + (h - l) / 2
l + h 可能出现加法溢出,最好使用第二种方式。
**返回值**
循环退出时如果仍然没有查找到 key那么表示查找失败。可以有两种返回值
- -1以一个错误码指示没有查找到 key
- l将 key 插入到 nums 中的正确位置
**变种**
二分查找可以有很多变种,变种实现要多注意边界值的判断。例如在一个有重复元素的数组中查找 key 的最左位置的实现如下:
```java
public int binarySearch(int[] nums, int key) {
int l = 0, h = nums.length - 1;
while (l < h) {
int m = l + (h - l) / 2;
if (nums[m] >= key)
h = m;
else
l = m + 1;
}
return l;
}
```
该实现和正常实现有以下不同:
- 循环条件为 l < h
- h 的赋值表达式为 h = m
- 最后返回 l 而不是 -1
在 nums[m] >= key 的情况下,可以推导出最左 key 位于 [l, m] 区间中这是一个闭区间。h 的赋值表达式为 h = m因为 m 位置也可能是解。
在 h 的赋值表达式为 h = mid 的情况下,如果循环条件为 l <= h那么会出现循环无法退出的情况因此循环条件只能是 l < h
```text
nums = {0, 1}, key = 0
l m h
0 1 2 nums[m] >= key
0 0 1 nums[m] >= key
0 0 0 nums[m] >= key
0 0 0 nums[m] >= key
...
```
当循环体退出时,不表示没有查找到 key因此最后返回的结果不应该为 -1。为了验证有没有查找到需要在调用端判断一下返回位置上的值和 key 是否相等。
**求开方**
[69. Sqrt(x) (Easy)](https://leetcode.com/problems/sqrtx/description/)
```html
Input: 4
Output: 2
Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since we want to return an integer, the decimal part will be truncated.
```
一个数 x 的开方 sqrt 一定在 0 \~ x 之间,并且满足 sqrt == x / sqrt。可以利用二分查找在 0 \~ x 之间查找 sqrt。
对于 x = 8它的开方是 2.82842...,最后应该返回 2 而不是 3。在循环条件为 l <= h 并且循环退出时h 总是比 l 小 1也就是说 h = 2l = 3因此最后的返回值应该为 h 而不是 l。
```java
public int mySqrt(int x) {
if (x <= 1)
return x;
int l = 1, h = x;
while (l <= h) {
int mid = l + (h - l) / 2;
int sqrt = x / mid;
if (sqrt == mid)
return mid;
else if (sqrt < mid)
h = mid - 1;
else
l = mid + 1;
}
return h;
}
```
**大于给定元素的最小元素**
[744. Find Smallest Letter Greater Than Target (Easy)](https://leetcode.com/problems/find-smallest-letter-greater-than-target/description/)
```html
Input:
letters = ["c", "f", "j"]
target = "d"
Output: "f"
Input:
letters = ["c", "f", "j"]
target = "k"
Output: "c"
```
题目描述:给定一个有序的字符数组 letters 和一个字符 target要求找出 letters 中大于 target 的最小字符。letters 字符数组是循环数组。
应该注意最后返回的是 l 位置的字符。
```java
public char nextGreatestLetter(char[] letters, char target) {
int n = letters.length;
int l = 0, h = n - 1;
while (l <= h) {
int m = l + (h - l) / 2;
if (letters[m] <= target)
l = m + 1;
else
h = m - 1;
}
return l < n ? letters[l] : letters[0];
}
```
**有序数组的 Single Element**
[540. Single Element in a Sorted Array (Medium)](https://leetcode.com/problems/single-element-in-a-sorted-array/description/)
```html
Input: [1,1,2,3,3,4,4,8,8]
Output: 2
```
题目描述:一个有序数组只有一个数不出现两次,找出这个数。要求以 O(logN) 时间复杂度进行求解。
令 key 为 Single Element 在数组中的位置。如果 m 为偶数,并且 m + 1 < key那么 nums[m] == nums[m + 1]m + 1 >= key那么 nums[m] != nums[m + 1]。
从上面的规律可以知道,如果 nums[m] == nums[m + 1],那么 key 所在的数组位置为 [m + 2, h],此时令 l = m + 2如果 nums[m] != nums[m + 1],那么 key 所在的数组位置为 [l, m],此时令 h = m。
因为 h 的赋值表达式为 h = m那么循环条件也就只能使用 l < h 这种形式
```java
public int singleNonDuplicate(int[] nums) {
int l = 0, h = nums.length - 1;
while (l < h) {
int m = l + (h - l) / 2;
if (m % 2 == 1)
m--; // 保证 l/h/m 都在偶数位,使得查找区间大小一直都是奇数
if (nums[m] == nums[m + 1])
l = m + 2;
else
h = m;
}
return nums[l];
}
```
**第一个错误的版本**
[278. First Bad Version (Easy)](https://leetcode.com/problems/first-bad-version/description/)
题目描述:给定一个元素 n 代表有 [1, 2, ..., n] 版本,可以调用 isBadVersion(int x) 知道某个版本是否错误,要求找到第一个错误的版本。
如果第 m 个版本出错,则表示第一个错误的版本在 [l, m] 之间,令 h = m否则第一个错误的版本在 [m + 1, h] 之间,令 l = m + 1。
因为 h 的赋值表达式为 h = m因此循环条件为 l < h
```java
public int firstBadVersion(int n) {
int l = 1, h = n;
while (l < h) {
int mid = l + (h - l) / 2;
if (isBadVersion(mid))
h = mid;
else
l = mid + 1;
}
return l;
}
```
**旋转数组的最小数字**
[153. Find Minimum in Rotated Sorted Array (Medium)](https://leetcode.com/problems/find-minimum-in-rotated-sorted-array/description/)
```html
Input: [3,4,5,1,2],
Output: 1
```
```java
public int findMin(int[] nums) {
int l = 0, h = nums.length - 1;
while (l < h) {
int m = l + (h - l) / 2;
if (nums[m] <= nums[h])
h = m;
else
l = m + 1;
}
return nums[l];
}
```
**查找区间**
[34. Search for a Range (Medium)](https://leetcode.com/problems/search-for-a-range/description/)
```html
Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]
Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]
```
```java
public int[] searchRange(int[] nums, int target) {
int first = binarySearch(nums, target);
int last = binarySearch(nums, target + 1) - 1;
if (first == nums.length || nums[first] != target)
return new int[]{-1, -1};
else
return new int[]{first, Math.max(first, last)};
}
private int binarySearch(int[] nums, int target) {
int l = 0, h = nums.length; // 注意 h 的初始值
while (l < h) {
int m = l + (h - l) / 2;
if (nums[m] >= target)
h = m;
else
l = m + 1;
}
return l;
}
```
## 贪心思想
贪心思想保证每次操作都是局部最优的,并且最后得到的结果是全局最优的。
@ -2263,6 +1997,274 @@ private void backtracking(int row) {
}
```
## 二分查找
(一)正常实现
```java
public int binarySearch(int[] nums, int key) {
int l = 0, h = nums.length - 1;
while (l <= h) {
int m = l + (h - l) / 2;
if (nums[m] == key) {
return m;
} else if (nums[m] > key) {
h = m - 1;
} else {
l = m + 1;
}
}
return -1;
}
```
(二)时间复杂度
O(logN)
m 计算
有两种计算 m 的方式:
- m = (l + h) / 2
- m = l + (h - l) / 2
l + h 可能出现加法溢出,最好使用第二种方式。
(四)返回值
循环退出时如果仍然没有查找到 key那么表示查找失败。可以有两种返回值
- -1以一个错误码表示没有查找到 key
- l将 key 插入到 nums 中的正确位置
(五)变种
二分查找可以有很多变种,变种实现要注意边界值的判断。例如在一个有重复元素的数组中查找 key 的最左位置的实现如下:
```java
public int binarySearch(int[] nums, int key) {
int l = 0, h = nums.length - 1;
while (l < h) {
int m = l + (h - l) / 2;
if (nums[m] >= key) {
h = m;
} else {
l = m + 1;
}
}
return l;
}
```
该实现和正常实现有以下不同:
- 循环条件为 l < h
- h 的赋值表达式为 h = m
- 最后返回 l 而不是 -1
在 nums[m] >= key 的情况下,可以推导出最左 key 位于 [l, m] 区间中这是一个闭区间。h 的赋值表达式为 h = m因为 m 位置也可能是解。
在 h 的赋值表达式为 h = mid 的情况下,如果循环条件为 l <= h那么会出现循环无法退出的情况因此循环条件只能是 l < h以下演示了循环条件为 l<=h 循环无法退出的情况
```text
nums = {0, 1, 2}, key = 1
l m h
0 1 2 nums[m] >= key
0 0 1 nums[m] < key
1 1 1 nums[m] >= key
1 1 1 nums[m] >= key
...
```
当循环体退出时,不表示没有查找到 key因此最后返回的结果不应该为 -1。为了验证有没有查找到需要在调用端判断一下返回位置上的值和 key 是否相等。
**求开方**
[69. Sqrt(x) (Easy)](https://leetcode.com/problems/sqrtx/description/)
```html
Input: 4
Output: 2
Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since we want to return an integer, the decimal part will be truncated.
```
一个数 x 的开方 sqrt 一定在 0 \~ x 之间,并且满足 sqrt == x / sqrt。可以利用二分查找在 0 \~ x 之间查找 sqrt。
对于 x = 8它的开方是 2.82842...,最后应该返回 2 而不是 3。在循环条件为 l <= h 并且循环退出时h 总是比 l 小 1也就是说 h = 2l = 3因此最后的返回值应该为 h 而不是 l。
```java
public int mySqrt(int x) {
if (x <= 1)
return x;
int l = 1, h = x;
while (l <= h) {
int mid = l + (h - l) / 2;
int sqrt = x / mid;
if (sqrt == mid)
return mid;
else if (sqrt < mid)
h = mid - 1;
else
l = mid + 1;
}
return h;
}
```
**大于给定元素的最小元素**
[744. Find Smallest Letter Greater Than Target (Easy)](https://leetcode.com/problems/find-smallest-letter-greater-than-target/description/)
```html
Input:
letters = ["c", "f", "j"]
target = "d"
Output: "f"
Input:
letters = ["c", "f", "j"]
target = "k"
Output: "c"
```
题目描述:给定一个有序的字符数组 letters 和一个字符 target要求找出 letters 中大于 target 的最小字符。letters 字符数组是循环数组。
应该注意最后返回的是 l 位置的字符。
```java
public char nextGreatestLetter(char[] letters, char target) {
int n = letters.length;
int l = 0, h = n - 1;
while (l <= h) {
int m = l + (h - l) / 2;
if (letters[m] <= target)
l = m + 1;
else
h = m - 1;
}
return l < n ? letters[l] : letters[0];
}
```
**有序数组的 Single Element**
[540. Single Element in a Sorted Array (Medium)](https://leetcode.com/problems/single-element-in-a-sorted-array/description/)
```html
Input: [1,1,2,3,3,4,4,8,8]
Output: 2
```
题目描述:一个有序数组只有一个数不出现两次,找出这个数。要求以 O(logN) 时间复杂度进行求解。
令 key 为 Single Element 在数组中的位置。如果 m 为偶数,并且 m + 1 < key那么 nums[m] == nums[m + 1]m + 1 >= key那么 nums[m] != nums[m + 1]。
从上面的规律可以知道,如果 nums[m] == nums[m + 1],那么 key 所在的数组位置为 [m + 2, h],此时令 l = m + 2如果 nums[m] != nums[m + 1],那么 key 所在的数组位置为 [l, m],此时令 h = m。
因为 h 的赋值表达式为 h = m那么循环条件也就只能使用 l < h 这种形式
```java
public int singleNonDuplicate(int[] nums) {
int l = 0, h = nums.length - 1;
while (l < h) {
int m = l + (h - l) / 2;
if (m % 2 == 1)
m--; // 保证 l/h/m 都在偶数位,使得查找区间大小一直都是奇数
if (nums[m] == nums[m + 1])
l = m + 2;
else
h = m;
}
return nums[l];
}
```
**第一个错误的版本**
[278. First Bad Version (Easy)](https://leetcode.com/problems/first-bad-version/description/)
题目描述:给定一个元素 n 代表有 [1, 2, ..., n] 版本,可以调用 isBadVersion(int x) 知道某个版本是否错误,要求找到第一个错误的版本。
如果第 m 个版本出错,则表示第一个错误的版本在 [l, m] 之间,令 h = m否则第一个错误的版本在 [m + 1, h] 之间,令 l = m + 1。
因为 h 的赋值表达式为 h = m因此循环条件为 l < h
```java
public int firstBadVersion(int n) {
int l = 1, h = n;
while (l < h) {
int mid = l + (h - l) / 2;
if (isBadVersion(mid))
h = mid;
else
l = mid + 1;
}
return l;
}
```
**旋转数组的最小数字**
[153. Find Minimum in Rotated Sorted Array (Medium)](https://leetcode.com/problems/find-minimum-in-rotated-sorted-array/description/)
```html
Input: [3,4,5,1,2],
Output: 1
```
```java
public int findMin(int[] nums) {
int l = 0, h = nums.length - 1;
while (l < h) {
int m = l + (h - l) / 2;
if (nums[m] <= nums[h])
h = m;
else
l = m + 1;
}
return nums[l];
}
```
**查找区间**
[34. Search for a Range (Medium)](https://leetcode.com/problems/search-for-a-range/description/)
```html
Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]
Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]
```
```java
public int[] searchRange(int[] nums, int target) {
int first = binarySearch(nums, target);
int last = binarySearch(nums, target + 1) - 1;
if (first == nums.length || nums[first] != target)
return new int[]{-1, -1};
else
return new int[]{first, Math.max(first, last)};
}
private int binarySearch(int[] nums, int target) {
int l = 0, h = nums.length; // 注意 h 的初始值
while (l < h) {
int m = l + (h - l) / 2;
if (nums[m] >= target)
h = m;
else
l = m + 1;
}
return l;
}
```
## 分治
**给表达式加括号**