auto commit

This commit is contained in:
CyC2018 2018-03-10 21:00:46 +08:00
parent e467aec64c
commit ba347b8f11

View File

@ -41,6 +41,8 @@
* [2.1 互斥同步](#21-互斥同步)
* [2.2 非阻塞同步](#22-非阻塞同步)
* [2.3 无同步方案](#23-无同步方案)
* [锁优化](#锁优化)
* [1. 自旋锁与自适应自旋](#1-自旋锁与自适应自旋)
* [多线程开发良好的实践](#多线程开发良好的实践)
* [参考资料](#参考资料)
<!-- GFM-TOC -->
@ -687,10 +689,10 @@ Thread printThread = new Thread(new Runnable() {
如果需要使用上述功能,选用 ReentrantLock 是一个很好的选择,那如果是基于性能考虑呢?关于 synchronized 和 ReentrantLock 的性能问题Brian Goetz 对这两种锁在 JDK 1.5 与单核处理器,以及 JDK 1.5 与双 Xeon 处理器环境下做了一组吞吐量对比的实验,实验结果如图 13-1 和图 13-2 所示。
<div align="center"> <img src="../pics//d4a05b9c-f423-4137-9510-b6851f089edb.jpg"/> </div><br>
JDK 1.5、单核处理器下两种锁的吞吐量对比 </center>
<div align="center"> JDK 1.5、单核处理器下两种锁的吞吐量对比 </div><br>
<div align="center"> <img src="../pics//acc42b0f-10ba-4fa2-8694-cf2aab1fb434.jpg"/> </div><br>
DK 1.5、双 Xeon 处理器下两种锁的吞吐量对比 </center>
<div align="center"> JDK 1.5、双 Xeon 处理器下两种锁的吞吐量对比 </div><br>
多线程环境下 synchronized 的吞吐量下降得非常严重,而 ReentrantLock 则能基本保持在同一个比较稳定的水平上。与其说 ReentrantLock 性能好,还不如说 synchronized 还有非常大的优化余地。后续的技术发展也证明了这一点JDK 1.6 中加入了很多针对锁的优化措施JDK 1.6 发布之后,人们就发现 synchronized 与 ReentrantLock 的性能基本上是完全持平了。因此,如果读者的程序是使用 JDK 1.6 或以上部署的话,性能因素就不再是选择 ReentrantLock 的理由了,虚拟机在未来的性能改进中肯定也会更加偏向于原生的 synchronized所以还是提倡在 synchronized 能实现需求的情况下,优先考虑使用 synchronized 来进行同步。
@ -708,7 +710,7 @@ Thread printThread = new Thread(new Runnable() {
其中,前面的 3 条是 20 世纪就已经存在于大多数指令集之中的处理器指令,后面的两条是现代处理器新增的,而且这两条指令的目的和功能是类似的。在 IA64、x86 指令集中有 cmpxchg 指令完成 CAS 功能,在 sparc-TSO 也有 casa 指令实现,而在 ARM 和 PowerPC 架构下,则需要使用一对 ldrex/strex 指令来完成 LL/SC 的功能。
CAS 指令需要有 3 个操作数,分别是内存位置(在 Java 中可以简单理解为变量的内存地址,用 V 表示)、旧的预期值(用 A 表示)和新值(用 B 表示。CAS 指令执行时,当且仅当 V 符合旧预期值 A 时,处理器用新值 B 更新 V 的值,否则它就不执行更新,但是无论是否更新了 V 的值,都会返回 V 的旧值,上述的处理过程是一个原子操作。
**CAS** 指令需要有 3 个操作数,分别是内存位置(在 Java 中可以简单理解为变量的内存地址,用 V 表示)、旧的预期值(用 A 表示)和新值(用 B 表示。CAS 指令执行时,当且仅当 V 符合旧预期值 A 时,处理器用新值 B 更新 V 的值,否则它就不执行更新,但是无论是否更新了 V 的值,都会返回 V 的旧值,上述的处理过程是一个原子操作。
在 JDK 1.5 之后Java 程序中才可以使用 CAS 操作,该操作由 sun.misc.Unsafe 类里面的 compareAndSwapInt() 和 compareAndSwapLong() 等几个方法包装提供,虚拟机在内部对这些方法做了特殊处理,即时编译出来的结果就是一条平台相关的处理器 CAS 指令,没有方法调用的过程,或者可以认为是无条件内联进去了。
@ -760,7 +762,7 @@ public class AtomicTest {
200000
```
incrementAndGet() 的实现其实非常简单
incrementAndGet() 的实现其实非常简单
代码清单 incrementAndGet() 方法的 JDK 源码
@ -785,6 +787,26 @@ incrementAndGet() 方法在一个无限循环中,不断尝试将一个比当
### 2.3 无同步方案
要保证线程安全,并不是一定就要进行同步,两者没有因果关系。同步只是保证共享数据争用时的正确性的手段,如果一个方法本来就不涉及共享数据,那它自然就无须任何同步措施去保证正确性,因此会有一些代码天生就是线程安全的,笔者简单地介绍其中的两类。
**可重入代码** Reentrant Code这种代码也叫做纯代码Pure Code可以在代码执行的任何时刻中断它转而去执行另外一段代码包括递归调用它本身而在控制权返回后原来的程序不会出现任何错误。相对线程安全来说可重入性是更基本的特性它可以保证线程安全即所有的可重入的代码都是线程安全的但是并非所有的线程安全的代码都是可重入的。
可重入代码有一些共同的特征,例如不依赖存储在堆上的数据和公用的系统资源、用到的状态量都由参数中传入、不调用非可重入的方法等。我们可以通过一个简单的原则来判断代码是否具备可重入性:如果一个方法,它的返回结果是可以预测的,只要输入了相同的数据,就都能返回相同的结果,那它就满足可重入性的要求,当然也就是线程安全的。
**线程本地存储** Thread Local Storage如果一段代码中所需要的数据必须与其他代码共享那就看看这些共享数据的代码是否能保证在同一个线程中执行如果能保证我们就可以把共享数据的可见范围限制在同一个线程之内这样无须同步也能保证线程之间不出现数据争用的问题。
符合这种特点的应用并不少见,大部分使用消费队列的架构模式(如“生产者-消费者”模式)都会将产品的消费过程尽量在一个线程中消费完,其中最重要的一个应用实例就是经典 Web 交互模型中的“一个请求对应一个服务器线程”Thread-per-Request的处理方式这种处理方式的广泛应用使得很多 Web 服务端应用都可以使用线程本地存储来解决线程安全问题。
Java 语言中,如果一个变量要被多线程访问,可以使用 volatile 关键字声明它为“易变的”如果一个变量要被某个线程独享Java 中就没有类似 C++中 \_\_declspecthread这样的关键字不过还是可以通过 java.lang.ThreadLocal 类来实现线程本地存储的功能。每一个线程的 Thread 对象中都有一个 ThreadLocalMap 对象,这个对象存储了一组以 ThreadLocal.threadLocalHashCode 为键,以本地线程变量为值的 K-V 值对ThreadLocal 对象就是当前线程的 ThreadLocalMap 的访问入口,每一个 ThreadLocal 对象都包含了一个独一无二的 threadLocalHashCode 值,使用这个值就可以在线程 K-V 值对中找回对应的本地线程变量。
# 锁优化
高效并发是从 JDK 1.5 到 JDK 1.6 的一个重要改进HotSpot 虚拟机开发团队在这个版本上花费了大量的精力去实现各种锁优化技术如适应性自旋Adaptive Spinning、锁消除Lock Elimination、锁粗化Lock Coarsening、轻量级锁Lightweight Locking和偏向锁Biased Locking等。这些技术都是为了在线程之间更高效地共享数据以及解决竞争问题从而提高程序的执行效率。
## 1. 自旋锁与自适应自旋
前面我们讨论互斥同步的时候,提到了互斥同步对性能最大的营销阻塞的实现,挂起线程和恢复线程的操作都需要转入内核态完成,这些操作给系统的并发性能带来了很大的压力。同时,虚拟机的开发团队也注意到在许多应用上,共享数据的锁定状态只会持续很短的一段时间,为了这段时间去挂起和恢复线程并不值得。如果物理机器有一个以上的处理器,能让两个或以上的线程同时并行执行,我们就可以让后面请求锁的那个线程 “稍等一下”,但不放弃处理器的执行时间,看看持有锁的线程是否很快就会释放锁。为了让线程等待,我们只需让线程执行一个忙循环(自旋),这项技术就是所谓的自旋锁。
# 多线程开发良好的实践
- 给线程命名;