auto commit
This commit is contained in:
parent
85768bdf25
commit
b541891328
|
@ -5325,6 +5325,70 @@ public int maxDepth(TreeNode root) {
|
|||
}
|
||||
```
|
||||
|
||||
**平衡树**
|
||||
|
||||
[110. Balanced Binary Tree (Easy)](https://leetcode.com/problems/balanced-binary-tree/description/)
|
||||
|
||||
```html
|
||||
3
|
||||
/ \
|
||||
9 20
|
||||
/ \
|
||||
15 7
|
||||
```
|
||||
|
||||
平衡树左右子树高度差都小于等于 1
|
||||
|
||||
```java
|
||||
private boolean result = true;
|
||||
|
||||
public boolean isBalanced(TreeNode root) {
|
||||
maxDepth(root);
|
||||
return result;
|
||||
}
|
||||
|
||||
public int maxDepth(TreeNode root) {
|
||||
if (root == null) return 0;
|
||||
int l = maxDepth(root.left);
|
||||
int r = maxDepth(root.right);
|
||||
if (Math.abs(l - r) > 1) result = false;
|
||||
return 1 + Math.max(l, r);
|
||||
}
|
||||
```
|
||||
|
||||
**两节点的最长路径**
|
||||
|
||||
[543. Diameter of Binary Tree (Easy)](https://leetcode.com/problems/diameter-of-binary-tree/description/)
|
||||
|
||||
```html
|
||||
Input:
|
||||
|
||||
1
|
||||
/ \
|
||||
2 3
|
||||
/ \
|
||||
4 5
|
||||
|
||||
Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].
|
||||
```
|
||||
|
||||
```java
|
||||
private int max = 0;
|
||||
|
||||
public int diameterOfBinaryTree(TreeNode root) {
|
||||
depth(root);
|
||||
return max;
|
||||
}
|
||||
|
||||
private int depth(TreeNode root) {
|
||||
if (root == null) return 0;
|
||||
int leftDepth = depth(root.left);
|
||||
int rightDepth = depth(root.right);
|
||||
max = Math.max(max, leftDepth + rightDepth);
|
||||
return Math.max(leftDepth, rightDepth) + 1;
|
||||
}
|
||||
```
|
||||
|
||||
**翻转树**
|
||||
|
||||
[226. Invert Binary Tree (Easy)](https://leetcode.com/problems/invert-binary-tree/description/)
|
||||
|
@ -5332,7 +5396,7 @@ public int maxDepth(TreeNode root) {
|
|||
```java
|
||||
public TreeNode invertTree(TreeNode root) {
|
||||
if (root == null) return null;
|
||||
TreeNode left = root.left; // 后面的操作会改变 left 指针,因此先保存下来
|
||||
TreeNode left = root.left; // 后面的操作会改变 left 指针,因此先保存下来
|
||||
root.left = invertTree(root.right);
|
||||
root.right = invertTree(left);
|
||||
return root;
|
||||
|
@ -5424,12 +5488,12 @@ Return 3. The paths that sum to 8 are:
|
|||
|
||||
```java
|
||||
public int pathSum(TreeNode root, int sum) {
|
||||
if(root == null) return 0;
|
||||
if (root == null) return 0;
|
||||
int ret = pathSumStartWithRoot(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum);
|
||||
return ret;
|
||||
}
|
||||
|
||||
private int pathSumStartWithRoot(TreeNode root, int sum){
|
||||
private int pathSumStartWithRoot(TreeNode root, int sum) {
|
||||
if (root == null) return 0;
|
||||
int ret = 0;
|
||||
if (root.val == sum) ret++;
|
||||
|
@ -5449,10 +5513,12 @@ Given tree s:
|
|||
4 5
|
||||
/ \
|
||||
1 2
|
||||
|
||||
Given tree t:
|
||||
4
|
||||
/ \
|
||||
1 2
|
||||
|
||||
Return true, because t has the same structure and node values with a subtree of s.
|
||||
|
||||
Given tree s:
|
||||
|
@ -5464,10 +5530,12 @@ Given tree s:
|
|||
1 2
|
||||
/
|
||||
0
|
||||
|
||||
Given tree t:
|
||||
4
|
||||
/ \
|
||||
1 2
|
||||
|
||||
Return false.
|
||||
```
|
||||
|
||||
|
@ -5503,7 +5571,7 @@ public boolean isSymmetric(TreeNode root) {
|
|||
return isSymmetric(root.left, root.right);
|
||||
}
|
||||
|
||||
private boolean isSymmetric(TreeNode t1, TreeNode t2){
|
||||
private boolean isSymmetric(TreeNode t1, TreeNode t2) {
|
||||
if (t1 == null && t2 == null) return true;
|
||||
if (t1 == null || t2 == null) return false;
|
||||
if (t1.val != t2.val) return false;
|
||||
|
@ -5511,37 +5579,6 @@ private boolean isSymmetric(TreeNode t1, TreeNode t2){
|
|||
}
|
||||
```
|
||||
|
||||
**平衡树**
|
||||
|
||||
[110. Balanced Binary Tree (Easy)](https://leetcode.com/problems/balanced-binary-tree/description/)
|
||||
|
||||
```html
|
||||
3
|
||||
/ \
|
||||
9 20
|
||||
/ \
|
||||
15 7
|
||||
```
|
||||
|
||||
平衡树左右子树高度差都小于等于 1
|
||||
|
||||
```java
|
||||
private boolean result = true;
|
||||
|
||||
public boolean isBalanced(TreeNode root) {
|
||||
maxDepth(root);
|
||||
return result;
|
||||
}
|
||||
|
||||
public int maxDepth(TreeNode root) {
|
||||
if (root == null) return 0;
|
||||
int l = maxDepth(root.left);
|
||||
int r = maxDepth(root.right);
|
||||
if (Math.abs(l - r) > 1) result = false;
|
||||
return 1 + Math.max(l, r);
|
||||
}
|
||||
```
|
||||
|
||||
**最小路径**
|
||||
|
||||
[111. Minimum Depth of Binary Tree (Easy)](https://leetcode.com/problems/minimum-depth-of-binary-tree/description/)
|
||||
|
@ -5591,6 +5628,7 @@ private boolean isLeaf(TreeNode node){
|
|||
|
||||
```html
|
||||
Input:
|
||||
|
||||
3
|
||||
/ \
|
||||
0 4
|
||||
|
@ -5603,6 +5641,7 @@ Input:
|
|||
R = 3
|
||||
|
||||
Output:
|
||||
|
||||
3
|
||||
/
|
||||
2
|
||||
|
@ -5644,81 +5683,19 @@ private TreeNode toBST(int[] nums, int sIdx, int eIdx){
|
|||
}
|
||||
```
|
||||
|
||||
**两节点的最长路径**
|
||||
|
||||
[543. Diameter of Binary Tree (Easy)](https://leetcode.com/problems/diameter-of-binary-tree/description/)
|
||||
|
||||
```html
|
||||
Input:
|
||||
1
|
||||
/ \
|
||||
2 3
|
||||
/ \
|
||||
4 5
|
||||
|
||||
Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].
|
||||
```
|
||||
|
||||
```java
|
||||
private int max = 0;
|
||||
|
||||
public int diameterOfBinaryTree(TreeNode root) {
|
||||
depth(root);
|
||||
return max;
|
||||
}
|
||||
|
||||
private int depth(TreeNode root) {
|
||||
if (root == null) return 0;
|
||||
int leftDepth = depth(root.left);
|
||||
int rightDepth = depth(root.right);
|
||||
max = Math.max(max, leftDepth + rightDepth);
|
||||
return Math.max(leftDepth, rightDepth) + 1;
|
||||
}
|
||||
```
|
||||
|
||||
**找出二叉树中第二小的节点**
|
||||
|
||||
[671. Second Minimum Node In a Binary Tree (Easy)](https://leetcode.com/problems/second-minimum-node-in-a-binary-tree/description/)
|
||||
|
||||
```html
|
||||
Input:
|
||||
2
|
||||
/ \
|
||||
2 5
|
||||
/ \
|
||||
5 7
|
||||
|
||||
Output: 5
|
||||
```
|
||||
|
||||
一个节点要么具有 0 个或 2 个子节点,如果有子节点,那么根节点是最小的节点。
|
||||
|
||||
```java
|
||||
public int findSecondMinimumValue(TreeNode root) {
|
||||
if (root == null) return -1;
|
||||
if (root.left == null && root.right == null) return -1;
|
||||
int leftVal = root.left.val;
|
||||
int rightVal = root.right.val;
|
||||
if (leftVal == root.val) leftVal = findSecondMinimumValue(root.left);
|
||||
if (rightVal == root.val) rightVal = findSecondMinimumValue(root.right);
|
||||
if (leftVal != -1 && rightVal != -1) return Math.min(leftVal, rightVal);
|
||||
if (leftVal != -1) return leftVal;
|
||||
return rightVal;
|
||||
}
|
||||
```
|
||||
|
||||
**二叉查找树的最近公共祖先**
|
||||
|
||||
[235. Lowest Common Ancestor of a Binary Search Tree (Easy)](https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-search-tree/description/)
|
||||
|
||||
```html
|
||||
_______6______
|
||||
/ \
|
||||
___2__ ___8__
|
||||
/ \ / \
|
||||
0 _4 7 9
|
||||
/ \
|
||||
3 5
|
||||
/ \
|
||||
___2__ ___8__
|
||||
/ \ / \
|
||||
0 4 7 9
|
||||
/ \
|
||||
3 5
|
||||
|
||||
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
|
||||
```
|
||||
|
||||
|
@ -5736,12 +5713,13 @@ public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
|
|||
|
||||
```html
|
||||
_______3______
|
||||
/ \
|
||||
___5__ ___1__
|
||||
/ \ / \
|
||||
6 _2 0 8
|
||||
/ \
|
||||
7 4
|
||||
/ \
|
||||
___5__ ___1__
|
||||
/ \ / \
|
||||
6 2 0 8
|
||||
/ \
|
||||
7 4
|
||||
|
||||
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
|
||||
```
|
||||
|
||||
|
@ -5804,17 +5782,44 @@ Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
|
|||
public int rob(TreeNode root) {
|
||||
if (root == null) return 0;
|
||||
int val1 = root.val;
|
||||
if (root.left != null) {
|
||||
val1 += rob(root.left.left) + rob(root.left.right);
|
||||
}
|
||||
if (root.right != null) {
|
||||
val1 += rob(root.right.left) + rob(root.right.right);
|
||||
}
|
||||
if (root.left != null) val1 += rob(root.left.left) + rob(root.left.right);
|
||||
if (root.right != null) val1 += rob(root.right.left) + rob(root.right.right);
|
||||
int val2 = rob(root.left) + rob(root.right);
|
||||
return Math.max(val1, val2);
|
||||
}
|
||||
```
|
||||
|
||||
**找出二叉树中第二小的节点**
|
||||
|
||||
[671. Second Minimum Node In a Binary Tree (Easy)](https://leetcode.com/problems/second-minimum-node-in-a-binary-tree/description/)
|
||||
|
||||
```html
|
||||
Input:
|
||||
2
|
||||
/ \
|
||||
2 5
|
||||
/ \
|
||||
5 7
|
||||
|
||||
Output: 5
|
||||
```
|
||||
|
||||
一个节点要么具有 0 个或 2 个子节点,如果有子节点,那么根节点是最小的节点。
|
||||
|
||||
```java
|
||||
public int findSecondMinimumValue(TreeNode root) {
|
||||
if (root == null) return -1;
|
||||
if (root.left == null && root.right == null) return -1;
|
||||
int leftVal = root.left.val;
|
||||
int rightVal = root.right.val;
|
||||
if (leftVal == root.val) leftVal = findSecondMinimumValue(root.left);
|
||||
if (rightVal == root.val) rightVal = findSecondMinimumValue(root.right);
|
||||
if (leftVal != -1 && rightVal != -1) return Math.min(leftVal, rightVal);
|
||||
if (leftVal != -1) return leftVal;
|
||||
return rightVal;
|
||||
}
|
||||
```
|
||||
|
||||
### 层次遍历
|
||||
|
||||
使用 BFS 进行层次遍历。不需要使用两个队列来分别存储当前层的节点和下一层的节点,因为在开始遍历一层的节点时,当前队列中的节点数就是当前层的节点数,只要控制遍历这么多节点数,就能保证这次遍历的都是当前层的节点。
|
||||
|
|
Loading…
Reference in New Issue
Block a user