auto commit

This commit is contained in:
CyC2018 2018-06-21 10:34:04 +08:00
parent 85768bdf25
commit b541891328

View File

@ -5325,6 +5325,70 @@ public int maxDepth(TreeNode root) {
} }
``` ```
**平衡树**
[110. Balanced Binary Tree (Easy)](https://leetcode.com/problems/balanced-binary-tree/description/)
```html
3
/ \
9 20
/ \
15 7
```
平衡树左右子树高度差都小于等于 1
```java
private boolean result = true;
public boolean isBalanced(TreeNode root) {
maxDepth(root);
return result;
}
public int maxDepth(TreeNode root) {
if (root == null) return 0;
int l = maxDepth(root.left);
int r = maxDepth(root.right);
if (Math.abs(l - r) > 1) result = false;
return 1 + Math.max(l, r);
}
```
**两节点的最长路径**
[543. Diameter of Binary Tree (Easy)](https://leetcode.com/problems/diameter-of-binary-tree/description/)
```html
Input:
1
/ \
2 3
/ \
4 5
Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].
```
```java
private int max = 0;
public int diameterOfBinaryTree(TreeNode root) {
depth(root);
return max;
}
private int depth(TreeNode root) {
if (root == null) return 0;
int leftDepth = depth(root.left);
int rightDepth = depth(root.right);
max = Math.max(max, leftDepth + rightDepth);
return Math.max(leftDepth, rightDepth) + 1;
}
```
**翻转树** **翻转树**
[226. Invert Binary Tree (Easy)](https://leetcode.com/problems/invert-binary-tree/description/) [226. Invert Binary Tree (Easy)](https://leetcode.com/problems/invert-binary-tree/description/)
@ -5449,10 +5513,12 @@ Given tree s:
4 5 4 5
/ \ / \
1 2 1 2
Given tree t: Given tree t:
4 4
/ \ / \
1 2 1 2
Return true, because t has the same structure and node values with a subtree of s. Return true, because t has the same structure and node values with a subtree of s.
Given tree s: Given tree s:
@ -5464,10 +5530,12 @@ Given tree s:
1 2 1 2
/ /
0 0
Given tree t: Given tree t:
4 4
/ \ / \
1 2 1 2
Return false. Return false.
``` ```
@ -5511,37 +5579,6 @@ private boolean isSymmetric(TreeNode t1, TreeNode t2){
} }
``` ```
**平衡树**
[110. Balanced Binary Tree (Easy)](https://leetcode.com/problems/balanced-binary-tree/description/)
```html
3
/ \
9 20
/ \
15 7
```
平衡树左右子树高度差都小于等于 1
```java
private boolean result = true;
public boolean isBalanced(TreeNode root) {
maxDepth(root);
return result;
}
public int maxDepth(TreeNode root) {
if (root == null) return 0;
int l = maxDepth(root.left);
int r = maxDepth(root.right);
if (Math.abs(l - r) > 1) result = false;
return 1 + Math.max(l, r);
}
```
**最小路径** **最小路径**
[111. Minimum Depth of Binary Tree (Easy)](https://leetcode.com/problems/minimum-depth-of-binary-tree/description/) [111. Minimum Depth of Binary Tree (Easy)](https://leetcode.com/problems/minimum-depth-of-binary-tree/description/)
@ -5591,6 +5628,7 @@ private boolean isLeaf(TreeNode node){
```html ```html
Input: Input:
3 3
/ \ / \
0 4 0 4
@ -5603,6 +5641,7 @@ Input:
R = 3 R = 3
Output: Output:
3 3
/ /
2 2
@ -5644,69 +5683,6 @@ private TreeNode toBST(int[] nums, int sIdx, int eIdx){
} }
``` ```
**两节点的最长路径**
[543. Diameter of Binary Tree (Easy)](https://leetcode.com/problems/diameter-of-binary-tree/description/)
```html
Input:
1
/ \
2 3
/ \
4 5
Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].
```
```java
private int max = 0;
public int diameterOfBinaryTree(TreeNode root) {
depth(root);
return max;
}
private int depth(TreeNode root) {
if (root == null) return 0;
int leftDepth = depth(root.left);
int rightDepth = depth(root.right);
max = Math.max(max, leftDepth + rightDepth);
return Math.max(leftDepth, rightDepth) + 1;
}
```
**找出二叉树中第二小的节点**
[671. Second Minimum Node In a Binary Tree (Easy)](https://leetcode.com/problems/second-minimum-node-in-a-binary-tree/description/)
```html
Input:
2
/ \
2 5
/ \
5 7
Output: 5
```
一个节点要么具有 0 个或 2 个子节点,如果有子节点,那么根节点是最小的节点。
```java
public int findSecondMinimumValue(TreeNode root) {
if (root == null) return -1;
if (root.left == null && root.right == null) return -1;
int leftVal = root.left.val;
int rightVal = root.right.val;
if (leftVal == root.val) leftVal = findSecondMinimumValue(root.left);
if (rightVal == root.val) rightVal = findSecondMinimumValue(root.right);
if (leftVal != -1 && rightVal != -1) return Math.min(leftVal, rightVal);
if (leftVal != -1) return leftVal;
return rightVal;
}
```
**二叉查找树的最近公共祖先** **二叉查找树的最近公共祖先**
[235. Lowest Common Ancestor of a Binary Search Tree (Easy)](https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-search-tree/description/) [235. Lowest Common Ancestor of a Binary Search Tree (Easy)](https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-search-tree/description/)
@ -5716,9 +5692,10 @@ public int findSecondMinimumValue(TreeNode root) {
/ \ / \
___2__ ___8__ ___2__ ___8__
/ \ / \ / \ / \
0 _4 7 9 0 4 7 9
/ \ / \
3 5 3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition. For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
``` ```
@ -5739,9 +5716,10 @@ public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
/ \ / \
___5__ ___1__ ___5__ ___1__
/ \ / \ / \ / \
6 _2 0 8 6 2 0 8
/ \ / \
7 4 7 4
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition. For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
``` ```
@ -5804,17 +5782,44 @@ Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
public int rob(TreeNode root) { public int rob(TreeNode root) {
if (root == null) return 0; if (root == null) return 0;
int val1 = root.val; int val1 = root.val;
if (root.left != null) { if (root.left != null) val1 += rob(root.left.left) + rob(root.left.right);
val1 += rob(root.left.left) + rob(root.left.right); if (root.right != null) val1 += rob(root.right.left) + rob(root.right.right);
}
if (root.right != null) {
val1 += rob(root.right.left) + rob(root.right.right);
}
int val2 = rob(root.left) + rob(root.right); int val2 = rob(root.left) + rob(root.right);
return Math.max(val1, val2); return Math.max(val1, val2);
} }
``` ```
**找出二叉树中第二小的节点**
[671. Second Minimum Node In a Binary Tree (Easy)](https://leetcode.com/problems/second-minimum-node-in-a-binary-tree/description/)
```html
Input:
2
/ \
2 5
/ \
5 7
Output: 5
```
一个节点要么具有 0 个或 2 个子节点,如果有子节点,那么根节点是最小的节点。
```java
public int findSecondMinimumValue(TreeNode root) {
if (root == null) return -1;
if (root.left == null && root.right == null) return -1;
int leftVal = root.left.val;
int rightVal = root.right.val;
if (leftVal == root.val) leftVal = findSecondMinimumValue(root.left);
if (rightVal == root.val) rightVal = findSecondMinimumValue(root.right);
if (leftVal != -1 && rightVal != -1) return Math.min(leftVal, rightVal);
if (leftVal != -1) return leftVal;
return rightVal;
}
```
### 层次遍历 ### 层次遍历
使用 BFS 进行层次遍历。不需要使用两个队列来分别存储当前层的节点和下一层的节点,因为在开始遍历一层的节点时,当前队列中的节点数就是当前层的节点数,只要控制遍历这么多节点数,就能保证这次遍历的都是当前层的节点。 使用 BFS 进行层次遍历。不需要使用两个队列来分别存储当前层的节点和下一层的节点,因为在开始遍历一层的节点时,当前队列中的节点数就是当前层的节点数,只要控制遍历这么多节点数,就能保证这次遍历的都是当前层的节点。