From 883e949456f415dfb3d50a83e662d6cedf70acf2 Mon Sep 17 00:00:00 2001 From: CyC2018 <1029579233@qq.com> Date: Wed, 13 Jun 2018 11:10:51 +0800 Subject: [PATCH] auto commit --- notes/Leetcode 题解.md | 222 ++++++++++++++++++++++++----------------- 1 file changed, 128 insertions(+), 94 deletions(-) diff --git a/notes/Leetcode 题解.md b/notes/Leetcode 题解.md index a35c73e5..f5e01cb2 100644 --- a/notes/Leetcode 题解.md +++ b/notes/Leetcode 题解.md @@ -2769,52 +2769,29 @@ Explanation: The array can be partitioned as [1, 5, 5] and [11]. 可以看成一个背包大小为 sum/2 的 0-1 背包问题。 ```java - public boolean canPartition(int[] nums) { - int sum = 0; - for (int num : nums) sum += num; - if (sum % 2 != 0) return false; - int W = sum / 2; - boolean[] dp = new boolean[W + 1]; - dp[0] = true; - for (int num : nums) { // 0-1 背包一个物品只能用一次 - for (int i = W; i >= 0; i--) { // 从后往前,先计算 dp[i] 再计算 dp[i-num] - if (num <= i) { - dp[i] = dp[i] || dp[i - num]; - } - } - } - return dp[W]; - } -``` - -**字符串按单词列表分割** - -[139. Word Break (Medium)](https://leetcode.com/problems/word-break/description/) - -```html -s = "leetcode", -dict = ["leet", "code"]. -Return true because "leetcode" can be segmented as "leet code". -``` - -这是一个完全背包问题,和 0-1 背包不同的是,完全背包中物品可以使用多次。在这一题当中,词典中的单词可以被使用多次。 - -0-1 背包和完全背包在实现上的不同之处是,0-1 背包对物品的迭代是在最外层,而完全背包对物品的迭代是在最里层。 - -```java -public boolean wordBreak(String s, List wordDict) { - int n = s.length(); - boolean[] dp = new boolean[n + 1]; +public boolean canPartition(int[] nums) { + int sum = computeArraySum(nums); + if (sum % 2 != 0) { + return false; + } + int W = sum / 2; + boolean[] dp = new boolean[W + 1]; dp[0] = true; - for (int i = 1; i <= n; i++) { - for (String word : wordDict) { // 每个单词可以使用多次 - int len = word.length(); - if (len <= i && word.equals(s.substring(i - len, i))) { - dp[i] = dp[i] || dp[i - len]; - } + Arrays.sort(nums); + for (int num : nums) { // 0-1 背包一个物品只能用一次 + for (int i = W; i >= num; i--) { // 从后往前,先计算 dp[i] 再计算 dp[i-num] + dp[i] = dp[i] || dp[i - num]; } } - return dp[n]; + return dp[W]; +} + +private int computeArraySum(int[] nums) { + int sum = 0; + for (int num : nums) { + sum += num; + } + return sum; } ``` @@ -2850,21 +2827,29 @@ sum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N) ```java public int findTargetSumWays(int[] nums, int S) { - int sum = 0; - for (int num : nums) sum += num; - if (sum < S || (sum + S) % 2 == 1) return 0; + int sum = computeArraySum(nums); + if (sum < S || (sum + S) % 2 == 1) { + return 0; + } int W = (sum + S) / 2; int[] dp = new int[W + 1]; dp[0] = 1; + Arrays.sort(nums); for (int num : nums) { - for (int i = W; i >= 0; i--) { - if (num <= i) { - dp[i] = dp[i] + dp[i - num]; - } + for (int i = W; i >= num; i--) { + dp[i] = dp[i] + dp[i - num]; } } return dp[W]; } + +private int computeArraySum(int[] nums) { + int sum = 0; + for (int num : nums) { + sum += num; + } + return sum; +} ``` DFS 解法: @@ -2875,8 +2860,42 @@ public int findTargetSumWays(int[] nums, int S) { } private int findTargetSumWays(int[] nums, int start, int S) { - if (start == nums.length) return S == 0 ? 1 : 0; - return findTargetSumWays(nums, start + 1, S + nums[start]) + findTargetSumWays(nums, start + 1, S - nums[start]); + if (start == nums.length) { + return S == 0 ? 1 : 0; + } + return findTargetSumWays(nums, start + 1, S + nums[start]) + + findTargetSumWays(nums, start + 1, S - nums[start]); +} +``` + +**字符串按单词列表分割** + +[139. Word Break (Medium)](https://leetcode.com/problems/word-break/description/) + +```html +s = "leetcode", +dict = ["leet", "code"]. +Return true because "leetcode" can be segmented as "leet code". +``` + +dict 中的单词没有使用次数的限制,因此这是一个完全背包问题。 + +0-1 背包和完全背包在实现上的不同之处是,0-1 背包对物品的迭代是在最外层,而完全背包对物品的迭代是在最里层。 + +```java +public boolean wordBreak(String s, List wordDict) { + int n = s.length(); + boolean[] dp = new boolean[n + 1]; + dp[0] = true; + for (int i = 1; i <= n; i++) { + for (String word : wordDict) { // 完全一个物品可以使用多次 + int len = word.length(); + if (len <= i && word.equals(s.substring(i - len, i))) { + dp[i] = dp[i] || dp[i - len]; + } + } + } + return dp[n]; } ``` @@ -2895,13 +2914,18 @@ Explanation: There are totally 4 strings can be formed by the using of 5 0s and ```java public int findMaxForm(String[] strs, int m, int n) { - if (strs == null || strs.length == 0) return 0; + if (strs == null || strs.length == 0) { + return 0; + } int[][] dp = new int[m + 1][n + 1]; - for (String s : strs) { // 每个字符串只能用一次 + for (String s : strs) { // 每个字符串只能用一次 int ones = 0, zeros = 0; for (char c : s.toCharArray()) { - if (c == '0') zeros++; - else ones++; + if (c == '0') { + zeros++; + } else { + ones++; + } } for (int i = m; i >= zeros; i--) { for (int j = n; j >= ones; j--) { @@ -2913,7 +2937,7 @@ public int findMaxForm(String[] strs, int m, int n) { } ``` -**找零钱** +**找零钱的方法数** [322. Coin Change (Medium)](https://leetcode.com/problems/coin-change/description/) @@ -2929,22 +2953,27 @@ return -1. 题目描述:给一些面额的硬币,要求用这些硬币来组成给定面额的钱数,并且使得硬币数量最少。硬币可以重复使用。 -这是一个完全背包问题,完全背包问题和 0-1 背包问题在实现上的区别在于,0-1 背包遍历物品的循环在外侧,而完全背包问题遍历物品的循环在内侧,在内侧体现出物品可以使用多次。 +- 物品:硬币 +- 物品大小:面额 +- 物品价值:数量 + +因为硬币可以重复使用,因此这是一个完全背包问题。 ```java public int coinChange(int[] coins, int amount) { - if (coins == null || coins.length == 0) return 0; - int[] dp = new int[amount + 1]; - Arrays.fill(dp, amount + 1); - dp[0] = 0; + if (coins == null || coins.length == 0) { + return 0; + } + int[] minimum = new int[amount + 1]; + Arrays.fill(minimum, amount + 1); + minimum[0] = 0; + Arrays.sort(coins); for (int i = 1; i <= amount; i++) { - for (int c : coins) { // 硬币可以使用多次 - if (c <= i) { - dp[i] = Math.min(dp[i], dp[i - c] + 1); - } + for (int j = 0; j < coins.length && coins[j] <= i; j++) { + minimum[i] = Math.min(minimum[i], minimum[i - coins[j]] + 1); } } - return dp[amount] > amount ? -1 : dp[amount]; + return minimum[amount] > amount ? -1 : minimum[amount]; } ``` @@ -2974,17 +3003,18 @@ Therefore the output is 7. ```java public int combinationSum4(int[] nums, int target) { - if (nums == null || nums.length == 0) return 0; - int[] dp = new int[target + 1]; - dp[0] = 1; + if (nums == null || nums.length == 0) { + return 0; + } + int[] maximum = new int[target + 1]; + maximum[0] = 1; + Arrays.sort(nums); for (int i = 1; i <= target; i++) { - for (int num : nums) { - if (num <= i) { - dp[i] += dp[i - num]; - } + for (int j = 0; j < nums.length && nums[j] <= i; j++) { + maximum[i] += maximum[i - nums[j]]; } } - return dp[target]; + return maximum[target]; } ``` @@ -2992,31 +3022,27 @@ public int combinationSum4(int[] nums, int target) { [188. Best Time to Buy and Sell Stock IV (Hard)](https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/description/) -```html -dp[i, j] = max(dp[i, j-1], prices[j] - prices[jj] + dp[i-1, jj]) { jj in range of [0, j-1] } - = max(dp[i, j-1], prices[j] + max(dp[i-1, jj] - prices[jj])) -``` - ```java public int maxProfit(int k, int[] prices) { int n = prices.length; - if (k >= n/2) { // 这种情况下该问题退化为普通的股票交易问题 - int maxPro = 0; + if (k >= n / 2) { // 这种情况下该问题退化为普通的股票交易问题 + int maxProfit = 0; for (int i = 1; i < n; i++) { - if (prices[i] > prices[i-1]) - maxPro += prices[i] - prices[i-1]; + if (prices[i] > prices[i - 1]) { + maxProfit += prices[i] - prices[i - 1]; + } } - return maxPro; + return maxProfit; } - int[][] dp = new int[k + 1][n]; + int[][] maxProfit = new int[k + 1][n]; for (int i = 1; i <= k; i++) { - int localMax = dp[i - 1][0] - prices[0]; + int localMax = maxProfit[i - 1][0] - prices[0]; for (int j = 1; j < n; j++) { - dp[i][j] = Math.max(dp[i][j - 1], prices[j] + localMax); - localMax = Math.max(localMax, dp[i - 1][j] - prices[j]); + maxProfit[i][j] = Math.max(maxProfit[i][j - 1], prices[j] + localMax); + localMax = Math.max(localMax, maxProfit[i - 1][j] - prices[j]); } } - return dp[k][n - 1]; + return maxProfit[k][n - 1]; } ``` @@ -3029,10 +3055,18 @@ public int maxProfit(int[] prices) { int firstBuy = Integer.MIN_VALUE, firstSell = 0; int secondBuy = Integer.MIN_VALUE, secondSell = 0; for (int curPrice : prices) { - if (firstBuy < -curPrice) firstBuy = -curPrice; - if (firstSell < firstBuy + curPrice) firstSell = firstBuy + curPrice; - if (secondBuy < firstSell - curPrice) secondBuy = firstSell - curPrice; - if (secondSell < secondBuy + curPrice) secondSell = secondBuy + curPrice; + if (firstBuy < -curPrice) { + firstBuy = -curPrice; + } + if (firstSell < firstBuy + curPrice) { + firstSell = firstBuy + curPrice; + } + if (secondBuy < firstSell - curPrice) { + secondBuy = firstSell - curPrice; + } + if (secondSell < secondBuy + curPrice) { + secondSell = secondBuy + curPrice; + } } return secondSell; }