auto commit

This commit is contained in:
CyC2018 2018-04-03 13:31:45 +08:00
parent 3e35079cf9
commit 7ca1fcc06b
3 changed files with 161 additions and 100 deletions

View File

@ -1841,9 +1841,9 @@ private int rob(int[] nums, int first, int last) {
定义一个数组 dp 存储错误方式数量dp[i] 表示前 i 个信和信封的错误方式数量。假设第 i 个信装到第 j 个信封里面,而第 j 个信装到第 k 个信封里面。根据 i 和 k 是否相等,有两种情况:
i==k交换 i 和 k 的信后,它们的信和信封在正确的位置,但是其余 i-2 封信有 dp[i-2] 种错误装信的方式。由于 j 有 i-1 种取值,因此共有 (i-1)\*dp[i-2] 种错误装信方式。
1. i==k交换 i 和 k 的信后,它们的信和信封在正确的位置,但是其余 i-2 封信有 dp[i-2] 种错误装信的方式。由于 j 有 i-1 种取值,因此共有 (i-1)\*dp[i-2] 种错误装信方式。
i != k交换 i 和 j 的信后,第 i 个信和信封在正确的位置,其余 i-1 封信有 dp[i-1] 种错误装信方式。由于 j 有 i-1 种取值,因此共有 (n-1)\*dp[i-1] 种错误装信方式。
2. i != k交换 i 和 j 的信后,第 i 个信和信封在正确的位置,其余 i-1 封信有 dp[i-1] 种错误装信方式。由于 j 有 i-1 种取值,因此共有 (n-1)\*dp[i-1] 种错误装信方式。
综上所述,错误装信数量方式数量为:
@ -1898,7 +1898,10 @@ len = 2 : [4, 5], [5, 6] => tails[1] = 5
len = 3 : [4, 5, 6] => tails[2] = 6
```
对于一个元素 x如果它大于 tails 数组所有的值,那么把它添加到 tails 后面;如果 tails[i-1] < x <= tails[i]那么更新 tails[i] = x
对于一个元素 x
- 如果它大于 tails 数组所有的值,那么把它添加到 tails 后面,表示最长递增子序列长度加 1
- 如果 tails[i-1] < x <= tails[i]那么更新 tails[i] = x
可以看出 tails 数组保持有序,因此在查找 S<sub>i</sub> 位于 tails 数组的位置时就可以使用二分查找。
@ -1926,6 +1929,43 @@ private int binarySearch(int[] nums, int first, int last, int key) {
}
```
**一组整数对能够构成的最长链**
[Leetcode : 646. Maximum Length of Pair Chain (Medium)](https://leetcode.com/problems/maximum-length-of-pair-chain/description/)
```html
Input: [[1,2], [2,3], [3,4]]
Output: 2
Explanation: The longest chain is [1,2] -> [3,4]
```
对于 (a, b) 和 (c, d) ,如果 b < c则它们可以构成一条链
```java
public int findLongestChain(int[][] pairs) {
if(pairs == null || pairs.length == 0) {
return 0;
}
Arrays.sort(pairs, (a, b) -> (a[0] - b[0]));
int n = pairs.length;
int[] dp = new int[n];
Arrays.fill(dp, 1);
for(int i = 0; i < n; i++) {
for(int j = 0; j < i; j++) {
if(pairs[i][0] > pairs[j][1]){
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
int ret = 0;
for(int num : dp) {
ret = Math.max(ret, num);
}
return ret;
}
```
**最长摆动子序列**
[Leetcode : 376. Wiggle Subsequence (Medium)](https://leetcode.com/problems/wiggle-subsequence/description/)
@ -1966,9 +2006,8 @@ public int wiggleMaxLength(int[] nums) {
定义一个二维数组 dp 用来存储最长公共子序列的长度,其中 dp[i][j] 表示 S1 的前 i 个字符与 S2 的前 j 个字符最长公共子序列的长度。考虑 S1<sub>i</sub> 与 S2<sub>j</sub> 值是否相等,分为两种情况:
① 当 S1<sub>i</sub>==S2<sub>j</sub> 时,那么就能在 S1 的前 i-1 个字符与 S2 的前 j-1 个字符最长公共子序列的基础上再加上 S1<sub>i</sub> 这个值,最长公共子序列长度加 1 ,即 dp[i][j] = dp[i-1][j-1] + 1。
② 当 S1<sub>i</sub> != S2<sub>j</sub> 时,此时最长公共子序列为 S1 的前 i-1 个字符和 S2 的前 j 个字符最长公共子序列,与 S1 的前 i 个字符和 S2 的前 j-1 个字符最长公共子序列,它们的最大者,即 dp[i][j] = max{ dp[i-1][j], dp[i][j-1] }。
1. 当 S1<sub>i</sub>==S2<sub>j</sub> 时,那么就能在 S1 的前 i-1 个字符与 S2 的前 j-1 个字符最长公共子序列的基础上再加上 S1<sub>i</sub> 这个值,最长公共子序列长度加 1 ,即 dp[i][j] = dp[i-1][j-1] + 1。
2. 当 S1<sub>i</sub> != S2<sub>j</sub> 时,此时最长公共子序列为 S1 的前 i-1 个字符和 S2 的前 j 个字符最长公共子序列,与 S1 的前 i 个字符和 S2 的前 j-1 个字符最长公共子序列,它们的最大者,即 dp[i][j] = max{ dp[i-1][j], dp[i][j-1] }。
综上,最长公共子序列的状态转移方程为:
@ -1978,9 +2017,9 @@ public int wiggleMaxLength(int[] nums) {
与最长递增子序列相比,最长公共子序列有以下不同点:
针对的是两个序列,求它们的最长公共子序列。
在最长递增子序列中dp[i] 表示以 S<sub>i</sub> 为结尾的最长递增子序列长度,子序列必须包含 S<sub>i</sub> 在最长公共子序列中dp[i][j] 表示 S1 中前 i 个字符与 S2 中前 j 个字符的最长公共子序列长度,不一定包含 S1<sub>i</sub> 和 S2<sub>j</sub>
由于 2 ,在求最终解时,最长公共子序列中 dp[N][M] 就是最终解,而最长递增子序列中 dp[N] 不是最终解,因为以 S<sub>N</sub> 为结尾的最长递增子序列不一定是整个序列最长递增子序列,需要遍历一遍 dp 数组找到最大者。
- 针对的是两个序列,求它们的最长公共子序列。
- 在最长递增子序列中dp[i] 表示以 S<sub>i</sub> 为结尾的最长递增子序列长度,子序列必须包含 S<sub>i</sub> 在最长公共子序列中dp[i][j] 表示 S1 中前 i 个字符与 S2 中前 j 个字符的最长公共子序列长度,不一定包含 S1<sub>i</sub> 和 S2<sub>j</sub>
- 由于 2 ,在求最终解时,最长公共子序列中 dp[N][M] 就是最终解,而最长递增子序列中 dp[N] 不是最终解,因为以 S<sub>N</sub> 为结尾的最长递增子序列不一定是整个序列最长递增子序列,需要遍历一遍 dp 数组找到最大者。
```java
public int lengthOfLCS(int[] nums1, int[] nums2) {
@ -2002,8 +2041,8 @@ public int lengthOfLCS(int[] nums1, int[] nums2) {
定义一个二维数组 dp 存储最大价值,其中 dp[i][j] 表示体积不超过 j 的情况下,前 i 件物品能达到的最大价值。设第 i 件物品体积为 w价值为 v根据第 i 件物品是否添加到背包中,可以分两种情况讨论:
第 i 件物品没添加到背包,总体积不超过 j 的前 i 件物品的最大价值就是总体积不超过 j 的前 i-1 件物品的最大价值dp[i][j] = dp[i-1][j]。
第 i 件物品添加到背包中dp[i][j] = dp[i-1][j-w] + v。
1. 第 i 件物品没添加到背包,总体积不超过 j 的前 i 件物品的最大价值就是总体积不超过 j 的前 i-1 件物品的最大价值dp[i][j] = dp[i-1][j]。
2. 第 i 件物品添加到背包中dp[i][j] = dp[i-1][j-w] + v。
第 i 件物品可添加也可以不添加,取决于哪种情况下最大价值更大。
@ -2069,33 +2108,25 @@ Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].
```
可以看成一个背包大小为 sum/2 的 0-1 背包问题,但是也有不同的地方,这里没有价值属性,并且背包必须被填满。
以下实现使用了空间优化。
可以看成一个背包大小为 sum/2 的 0-1 背包问题。
```java
public boolean canPartition(int[] nums) {
int sum = 0;
for (int num : nums) {
sum += num;
}
if (sum % 2 != 0) {
return false;
}
int W = sum / 2;
boolean[] dp = new boolean[W + 1];
for (int i = 0; i <= W; i++) {
if (nums[0] == i) {
dp[i] = true;
}
}
for (int i = 1; i < nums.length; i++) {
for (int j = W; j >= nums[i]; j--) {
dp[j] = dp[j] || dp[j - nums[i]];
}
}
return dp[W];
}
public boolean canPartition(int[] nums) {
int sum = 0;
for (int num : nums) sum += num;
if (sum % 2 != 0) return false;
int W = sum / 2;
boolean[] dp = new boolean[W + 1];
dp[0] = true;
for (int num : nums) { // 0-1 背包一个物品只能用一次
for (int i = W; i >= 0; i--) { // 从后往前,先计算 dp[i] 再计算 dp[i-num]
if (num <= i) {
dp[i] = dp[i] || dp[i - num];
}
}
}
return dp[W];
}
```
**字符串按单词列表分割**
@ -2108,15 +2139,20 @@ dict = ["leet", "code"].
Return true because "leetcode" can be segmented as "leet code".
```
这是一个完全背包问题,和 0-1 背包不同的是,完全背包中物品可以使用多次。在这一题当中,词典中的单词可以被使用多次。
0-1 背包和完全背包在实现上的不同之处是0-1 背包对物品的迭代是在最外层,而完全背包对物品的迭代是最最里层。
```java
public boolean wordBreak(String s, List<String> wordDict) {
int n = s.length();
boolean[] dp = new boolean[n + 1];
dp[0] = true;
for (int i = 1; i <= n; i++) {
for (String word : wordDict) {
if (word.length() <= i && word.equals(s.substring(i - word.length(), i))) {
dp[i] = dp[i] || dp[i - word.length()];
for (String word : wordDict) { // 每个单词可以使用多次
int len = word.length();
if (len <= i && word.equals(s.substring(i - len, i))) {
dp[i] = dp[i] || dp[i - len];
}
}
}
@ -2142,7 +2178,9 @@ Explanation:
There are 5 ways to assign symbols to make the sum of nums be target 3.
```
该问题可以转换为 subset sum 问题,从而使用 0-1 背包的方法来求解。可以将这组数看成两部分P 和 N其中 P 使用正号N 使用负号,有以下推导:
该问题可以转换为 Subset Sum 问题,从而使用 0-1 背包的方法来求解。
可以将这组数看成两部分P 和 N其中 P 使用正号N 使用负号,有以下推导:
```html
sum(P) - sum(N) = target
@ -2155,26 +2193,34 @@ sum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)
```java
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for (int num : nums) {
sum += num;
}
if (sum < S || (sum + S) % 2 == 1) {
return 0;
}
return subsetSum(nums, (sum + S) >>> 1);
}
private int subsetSum(int[] nums, int targetSum) {
Arrays.sort(nums);
int[] dp = new int[targetSum + 1];
for (int num : nums) sum += num;
if (sum < S || (sum + S) % 2 == 1) return 0;
int W = (sum + S) / 2;
int[] dp = new int[W + 1];
dp[0] = 1;
for (int i = 0; i < nums.length; i++) {
int num = nums[i];
for (int j = targetSum; j >= num; j--) {
dp[j] = dp[j] + dp[j - num];
for (int num : nums) {
for (int i = W; i >= 0; i--) {
if (num <= i) {
dp[i] = dp[i] + dp[i - num];
}
}
}
return dp[targetSum];
return dp[W];
}
```
DFS 解法:
```java
public int findTargetSumWays(int[] nums, int S) {
return findTargetSumWays(nums, 0, S);
}
private int findTargetSumWays(int[] nums, int start, int S) {
if (start == nums.length) {
return S == 0 ? 1 : 0;
}
return findTargetSumWays(nums, start + 1, S + nums[start]) + findTargetSumWays(nums, start + 1, S - nums[start]);
}
```
@ -2446,10 +2492,36 @@ public int minDistance(String word1, String word2) {
}
```
**修改一个字符串称为另一个字符串** // TODO
**修改一个字符串称为另一个字符串**
[Leetcode : 72. Edit Distance (Hard)](https://leetcode.com/problems/edit-distance/description/)
```java
public int minDistance(String word1, String word2) {
if (word1 == null || word2 == null) {
return 0;
}
int m = word1.length(), n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) {
dp[i][0] = i;
}
for (int i = 1; i <= n; i++) {
dp[0][i] = i;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i][j - 1], dp[i - 1][j])) + 1;
}
}
}
return dp[m][n];
}
```
### 分割整数
**分割整数的最大乘积**
@ -2552,6 +2624,20 @@ public int uniquePaths(int m, int n) {
}
```
也可以直接用数学公式求解,这是一个组合问题。机器人总共移动的次数 S=m+n-2向下移动的次数 D=m-1那么问题可以看成从 S 从取出 D 个位置的组合数量,这个问题的解为 C(S, D)。
```java
public int uniquePaths(int m, int n) {
int S = m + n - 2; // 总共的移动次数
int D = m - 1; // 向下的移动次数
long ret = 1;
for (int i = 1; i <= D; i++) {
ret = ret * (S - D + i) / i;
}
return (int) ret;
}
```
**矩阵的最小路径和**
[Leetcode : 64. Minimum Path Sum (Medium)](https://leetcode.com/problems/minimum-path-sum/description/)
@ -2616,43 +2702,6 @@ public int maxProfit(int[] prices) {
}
```
**一组整数对能够构成的最长链**
[Leetcode : 646. Maximum Length of Pair Chain (Medium)](https://leetcode.com/problems/maximum-length-of-pair-chain/description/)
```html
Input: [[1,2], [2,3], [3,4]]
Output: 2
Explanation: The longest chain is [1,2] -> [3,4]
```
对于 (a, b) 和 (c, d) ,如果 b < c则它们可以构成一条链
```java
public int findLongestChain(int[][] pairs) {
if(pairs == null || pairs.length == 0) {
return 0;
}
Arrays.sort(pairs, (a, b) -> (a[0] - b[0]));
int n = pairs.length;
int[] dp = new int[n];
Arrays.fill(dp, 1);
for(int i = 0; i < n; i++) {
for(int j = 0; j < i; j++) {
if(pairs[i][0] > pairs[j][1]){
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
int ret = 0;
for(int num : dp) {
ret = Math.max(ret, num);
}
return ret;
}
```
**买入和售出股票最大的收益**
[Leetcode : 121. Best Time to Buy and Sell Stock (Easy)](https://leetcode.com/problems/best-time-to-buy-and-sell-stock/description/)
@ -2679,6 +2728,18 @@ public int maxProfit(int[] prices) {
[Leetcode : 650. 2 Keys Keyboard (Medium)](https://leetcode.com/problems/2-keys-keyboard/description/)
题目描述:最开始只有一个字符 A问需要多少次操作能够得到 n 个字符 A每次操作可以复制当前所有的字符或者粘贴。
```
Input: 3
Output: 3
Explanation:
Intitally, we have one character 'A'.
In step 1, we use Copy All operation.
In step 2, we use Paste operation to get 'AA'.
In step 3, we use Paste operation to get 'AAA'.
```
```java
public int minSteps(int n) {
int[] dp = new int[n + 1];

View File

@ -127,15 +127,15 @@
<div align="center"> <img src="../pics//0ee0f61b-c782-441e-bf34-665650198ae0.jpg"/> </div><br>
### 6. 源地址哈希法 (IP Hash)
### 6.源地址哈希法(ip hash)
源地址哈希通过对客户端IP哈希计算得到的一个数值用该数值对服务器数量进行取模运算取模结果便是目标服务器的序号。
- 优点保证同一IP的客户端都会被hash到同一台服务器上。
- 缺点不利于集群扩展后台服务器数量变更都会影响hash结果。可以采用一致性Hash改进。
源地址哈希通过对客户端 IP 哈希计算得到的一个数值,用该数值对服务器数量进行取模运算,取模结果便是目标服务器的序号。
- 优点:保证同一 IP 的客户端都会被 hash 到同一台服务器上。
- 缺点:不利于集群扩展,后台服务器数量变更都会影响 hash 结果。可以采用一致性 Hash 改进。
<div align="center"> <img src="../pics//2018040302.jpg"/> </div><br>
## 实现
### 1. HTTP 重定向

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

After

Width:  |  Height:  |  Size: 33 KiB