auto commit

This commit is contained in:
CyC2018 2018-04-23 15:10:18 +08:00
parent 49b7fa8af7
commit 5cda768733

View File

@ -2923,13 +2923,16 @@ public int minSteps(int n) {
**整除** **整除**
令 x = 2<sup>m0</sup> \* 3<sup>m1</sup> \* 5<sup>m2</sup> \* 7<sup>m3</sup> \* 11<sup>m4</sup> \* … 令 x = 2<sup>m0</sup> \* 3<sup>m1</sup> \* 5<sup>m2</sup> \* 7<sup>m3</sup> \* 11<sup>m4</sup> \* …
令 y = 2<sup>n0</sup> \* 3<sup>n1</sup> \* 5<sup>n2</sup> \* 7<sup>n3</sup> \* 11<sup>n4</sup> \* … 令 y = 2<sup>n0</sup> \* 3<sup>n1</sup> \* 5<sup>n2</sup> \* 7<sup>n3</sup> \* 11<sup>n4</sup> \* …
如果 x 整除 yy mod x == 0则对于所有 imi <= ni。 如果 x 整除 yy mod x == 0则对于所有 imi <= ni。
x 和 y 的 **最大公约数**gcd(x,y) = 2<sup>min(m0,n0)</sup> \* 3<sup>min(m1,n1)</sup> \* 5<sup>min(m2,n2)</sup> \* ... **最大公约数最小公倍数**
x 和 y 的 **最小公倍数**lcm(x,y) = 2<sup>max(m0,n0)</sup> \* 3<sup>max(m1,n1)</sup> \* 5<sup>max(m2,n2)</sup> \* ... x 和 y 的最大公约数为gcd(x,y) = 2<sup>min(m0,n0)</sup> \* 3<sup>min(m1,n1)</sup> \* 5<sup>min(m2,n2)</sup> \* ...
x 和 y 的最小公倍数为lcm(x,y) = 2<sup>max(m0,n0)</sup> \* 3<sup>max(m1,n1)</sup> \* 5<sup>max(m2,n2)</sup> \* ...
**生成素数序列** **生成素数序列**
@ -2942,7 +2945,9 @@ public int countPrimes(int n) {
boolean[] notPrimes = new boolean[n + 1]; boolean[] notPrimes = new boolean[n + 1];
int cnt = 0; int cnt = 0;
for (int i = 2; i < n; i++){ for (int i = 2; i < n; i++){
if(notPrimes[i]) continue; if (notPrimes[i]) {
continue;
}
cnt++; cnt++;
// 从 i * i 开始,因为如果 k < i那么 k * i 在之前就已经被去除过了 // 从 i * i 开始,因为如果 k < i那么 k * i 在之前就已经被去除过了
for (long j = (long) i * i; j < n; j += i){ for (long j = (long) i * i; j < n; j += i){
@ -3050,6 +3055,30 @@ public String toHex(int num) {
} }
``` ```
**26 进制**
[Leetcode : 168. Excel Sheet Column Title (Easy)](https://leetcode.com/problems/excel-sheet-column-title/description/)
```html
1 -> A
2 -> B
3 -> C
...
26 -> Z
27 -> AA
28 -> AB
```
因为是从 1 开始计算的,而不是从 0 开始,因此需要对 n 执行 -1 操作。
```java
public String convertToTitle(int n) {
if (n == 0) return "";
n--;
return convertToTitle(n / 26) + (char) (n % 26 + 'A');
}
```
### 阶乘 ### 阶乘
**统计阶乘尾部有多少个 0** **统计阶乘尾部有多少个 0**
@ -3098,7 +3127,7 @@ public String addBinary(String a, String b) {
[Leetcode : 415. Add Strings (Easy)](https://leetcode.com/problems/add-strings/description/) [Leetcode : 415. Add Strings (Easy)](https://leetcode.com/problems/add-strings/description/)
字符串的值为非负整数 字符串的值为非负整数
```java ```java
public String addStrings(String num1, String num2) { public String addStrings(String num1, String num2) {
@ -3148,14 +3177,14 @@ Only two moves are needed (remember each move increments or decrements one eleme
```java ```java
public int minMoves2(int[] nums) { public int minMoves2(int[] nums) {
Arrays.sort(nums); Arrays.sort(nums);
int ret = 0; int move = 0;
int l = 0, h = nums.length - 1; int l = 0, h = nums.length - 1;
while (l <= h) { while (l <= h) {
ret += nums[h] - nums[l]; move += nums[h] - nums[l];
l++; l++;
h--; h--;
} }
return ret; return move;
} }
``` ```
@ -3165,31 +3194,41 @@ public int minMoves2(int[] nums) {
```java ```java
public int minMoves2(int[] nums) { public int minMoves2(int[] nums) {
int ret = 0; int move = 0;
int n = nums.length; int median = findKthSmallest(nums, nums.length / 2);
int median = quickSelect(nums, 0, n - 1, n / 2 + 1); for (int num : nums) {
for(int num : nums) ret += Math.abs(num - median); move += Math.abs(num - median);
return ret; }
return move;
} }
private int quickSelect(int[] nums, int start, int end, int k) { private int findKthSmallest(int[] nums, int k) {
int l = start, r = end, privot = nums[(l + r) / 2]; int l = 0, h = nums.length - 1;
while(l <= r) { while (l < h) {
while(nums[l] < privot) l++; int j = partition(nums, l, h);
while(nums[r] > privot) r--; if (j == k) break;
if(l >= r) break; if (j < k) l = j + 1;
swap(nums, l, r); else h = j - 1;
l++; r--;
} }
int left = l - start + 1; return nums[k];
if(left > k) return quickSelect(nums, start, l - 1, k); }
if(left == k && l == r) return nums[l];
int right = r - start + 1; private int partition(int[] nums, int l, int h) {
return quickSelect(nums, r + 1, end, k - right); int i = l, j = h + 1;
while (true) {
while (nums[++i] < nums[l] && i < h) ;
while (nums[--j] > nums[l] && j > l) ;
if (i >= j) break;
swap(nums, i, j);
}
swap(nums, l, j);
return j;
} }
private void swap(int[] nums, int i, int j) { private void swap(int[] nums, int i, int j) {
int tmp = nums[i]; nums[i] = nums[j]; nums[j] = tmp; int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
} }
``` ```
@ -3199,7 +3238,7 @@ private void swap(int[] nums, int i, int j) {
[Leetcode : 169. Majority Element (Easy)](https://leetcode.com/problems/majority-element/description/) [Leetcode : 169. Majority Element (Easy)](https://leetcode.com/problems/majority-element/description/)
先对数组排序,最中间那个数出现次数一定多于 n / 2 先对数组排序,最中间那个数出现次数一定多于 n / 2
```java ```java
public int majorityElement(int[] nums) { public int majorityElement(int[] nums) {
@ -3208,18 +3247,14 @@ public int majorityElement(int[] nums) {
} }
``` ```
可以利用 Boyer-Moore Majority Vote Algorithm 来解决这个问题,使得时间复杂度为 O(n)。可以这么理解该算法:使用 cnt 来统计一个元素出现的次数,当遍历到的元素和统计元素不相等时,令 cnt--。如果前面查找了 i 个元素,且 cnt == 0 ,说明前 i 个元素没有 majority或者有 majority但是出现的次数少于 i / 2 ,因为如果多于 i / 2 的话 cnt 就一定不会为 0 。此时剩下的 n - i 个元素中majority 的数目依然多于 (n - i) / 2因此继续查找就能找出 majority。 可以利用 Boyer-Moore Majority Vote Algorithm 来解决这个问题,使得时间复杂度为 O(N)。可以这么理解该算法:使用 cnt 来统计一个元素出现的次数,当遍历到的元素和统计元素不相等时,令 cnt--。如果前面查找了 i 个元素,且 cnt == 0 ,说明前 i 个元素没有 majority或者有 majority但是出现的次数少于 i / 2 ,因为如果多于 i / 2 的话 cnt 就一定不会为 0 。此时剩下的 n - i 个元素中majority 的数目依然多于 (n - i) / 2因此继续查找就能找出 majority。
```java ```java
public int majorityElement(int[] nums) { public int majorityElement(int[] nums) {
int cnt = 0, majority = 0; int cnt = 1, majority = nums[0];
for(int i = 0; i < nums.length; i++){ for (int i = 1; i < nums.length; i++) {
if(cnt == 0) { majority = (cnt == 0) ? nums[i] : majority;
majority = nums[i]; cnt = (majority == nums[i]) ? cnt + 1 : cnt - 1;
cnt++;
}
else if(majority == nums[i]) cnt++;
else cnt--;
} }
return majority; return majority;
} }
@ -3237,6 +3272,7 @@ Returns: True
``` ```
平方序列1,4,9,16,.. 平方序列1,4,9,16,..
间隔3,5,7,... 间隔3,5,7,...
间隔为等差数列,使用这个特性可以得到从 1 开始的平方序列。 间隔为等差数列,使用这个特性可以得到从 1 开始的平方序列。
@ -3262,6 +3298,37 @@ public boolean isPowerOfThree(int n) {
} }
``` ```
**乘积数组**
[Leetcode : 238. Product of Array Except Self (Medium)](https://leetcode.com/problems/product-of-array-except-self/description/)
```html
For example, given [1,2,3,4], return [24,12,8,6].
```
题目描述:给定一个数组,创建一个新数组,新数组的每个元素为原始数组中除了该位置上的元素之外所有元素的乘积。
题目要求:时间复杂度为 O(N),并且不能使用除法。
```java
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] products = new int[n];
Arrays.fill(products, 1);
int left = 1;
for (int i = 1; i < n; i++) {
left *= nums[i - 1];
products[i] *= left;
}
int right = 1;
for (int i = n - 2; i >= 0; i--) {
right *= nums[i + 1];
products[i] *= right;
}
return products;
}
```
**找出数组中的乘积最大的三个数** **找出数组中的乘积最大的三个数**
[Leetcode : 628. Maximum Product of Three Numbers (Easy)](https://leetcode.com/problems/maximum-product-of-three-numbers/description/) [Leetcode : 628. Maximum Product of Three Numbers (Easy)](https://leetcode.com/problems/maximum-product-of-three-numbers/description/)
@ -3297,37 +3364,6 @@ public int maximumProduct(int[] nums) {
} }
``` ```
**乘积数组**
[Leetcode : 238. Product of Array Except Self (Medium)](https://leetcode.com/problems/product-of-array-except-self/description/)
```html
For example, given [1,2,3,4], return [24,12,8,6].
```
题目描述:给定一个数组,创建一个新数组,新数组的每个元素为原始数组中除了该位置上的元素之外所有元素的乘积。
题目要求:时间复杂度为 O(n),并且不能使用除法。
```java
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] ret = new int[n];
ret[0] = 1;
int left = 1;
for (int i = 1; i < n; i++) {
ret[i] = left * nums[i - 1];
left *= nums[i - 1];
}
int right = 1;
for (int i = n - 1; i >= 0; i--) {
ret[i] *= right;
right *= nums[i];
}
return ret;
}
```
# 数据结构相关 # 数据结构相关
## 栈和队列 ## 栈和队列